1	8/30/21	Name		Student number
		https://bit.ly	v/3gwFeGc	preconceived idea, and you just follow the lead until you bump into
	So-called 'jun'	k' DNA play	ys a key role in speciation	something completely unexpected."
	Study suggests th	e system of ch	romosomal organization made	The origin of species: DNA edition
ŀ	possible by satelli	te DNA is a re	eason organisms from different	Researchers have known for years that satellite DNA is highly
	specie	s cannot prod	uce viable offspring	variable between species. "If you look at the chimpanzee genome
	by Eva Fredericl	k, <u>Whitehead In</u>	stitute for Biomedical Research	and the human genome, the protein coding regions are, like, 98
А	new study fr	rom Whitehe	ad Institute Member Yukiko	percent, 99 percent identical," she says. "But the junk DNA part is
Ya	mashita's lab s	suggests that	the system of chromosoma	l very, very different."
org	ganization made	possible by s	atellite DNA is one reason that	These are about the most rapidly evolving sequences in the
org	ganisms from diff	erent species c	cannot produce viable offspring.	genome, but the prior perspective has been, "Well, these are junk
Mo	ore than 10 perc	ent of our ge	enome is made up of repetitive	, sequences, who cares if your junk is different from mine?" said
see	emingly nonsensi	cal stretches o	of genetic material called satellite	Jagannathan.
DN	NA that do not co	de for any pro	oteins. In the past, some scientist	But as they were investigating the importance of satellite DNA for
ha	ve referred to this	DNA as "gene	omic junk."	fertility and survival in pure species, Yamashita and Jagannathan
Ov	ver a series of pap	ers spanning s	everal years, however, Whitehead	had their first hint that these repetitive sequences might play a role
Ins	stitute Member Y	ukiko Yamash	ita and colleagues have made the	in speciation.
cas	se that <u>satellite</u> D	NA is not junk	x, but instead has an essential role	When the researchers deleted a protein called Prod that binds to a
in	the cell: it work	s with cellula	r proteins to keep all of a cell's	specific satellite DNA sequence in the fruit fly Drosophila
1nc	lividual chromoso	omes together	in a single nucleus.	melanogaster, the flies' chromosomes scattered outside of the
No	w, in the latest i	nstallment of	their work, published online July	nucleus into tiny globs of cellular material called micronuclei, and
24	in the journal Mo	olecular Biolo	gy and Evolution, Yamashita and	the flies died.
tor	mer postdoctora	I fellow Mac	dhav Jagannathan, currently ar	"But we realized at this point that this [piece of] satellite DNA that
ass	sistant professor a	at ETH Zurich,	, Switzerland, take these studies a	was bound by the Prod protein was completely missing in the
ste	p further, proj	posing that	the system of chromosoma	I nearest relatives of Drosophila melanogaster, Jagannathan said. "It
org	ganization made	possible by s	atellite DNA is one reason tha	completely doesn't exist. So that's an interesting little problem."
org	ganisms from diff	erent species c	annot produce viable offspring.	If that piece of satellite DNA was essential for survival in one
"Se	even or eight yea	ars ago when	we decided we wanted to study	species but missing from another, it could imply that the two
sat	ellite DNA, we	e had zero p	blans to study evolution, said	species of flies had evolved different satellite DNA sequences for
r a	imasnita, who is a	also a professo	or of biology at the Massachusett	the same role over time. And since satellite DNA played a role in
	surule of Technologian	ology and an	investigator with the Howard	wondered whether these evolved differences could be seen as
	ignes medical Ins	n nort of doing	a salanaal whan way dark to	different energies are renneductively incorrectible
1	ins is one very fu	in part of doin	g science: when you don't have a	quinerent species are reproductively incompatible.

2 8/30/21 Nam	1e	Student number
"After we realized the func	ction [of satellite DNA in the cell], the	mutates relatively frequently, the proteins that bind the satellite
fact that satellite DNA is qu	uite different between species really hit	DNA and keep chromosomes together must evolve to keep up,
like lightning," Yamashita	said. "All of a sudden, it became a	leading each species to develop their own "strategy" for working
completely different investig	gation."	with the satellite DNA. When two organisms with different
A tale of two fruit fly speci	ies	strategies interbreed, a clash occurs, leading the chromosomes to
To study how satellite	DNA differences might underlie	scatter outside of the nucleus.
reproductive incompatibility	y, the researchers decided to focus on	In future studies, Yamashita and Jagannathan hope to put their
two branches of the fruit	fly family tree: the classic lab model	model to the ultimate test: if they can design a protein that can bind
Drosophila melanogaster,	and its closest relative, Drosophila	the satellite DNA of two different species and hold the
simulans. These two species	s diverged from each other two to three	chromosomes together, they could theoretically 'rescue' a doomed
million years ago.		hybrid, allowing it to survive and produce viable offspring.
Researchers can breed a	Drosophila melanogaster female to a	This feat of bioengineering is likely years off. "Right now it's just a
Drosophila simulans male,	"but [the cross] generates very unhappy	pure conceptual thing," Yamashita said. "In doing this tinkering,
offspring," Yamashita said.	"Either they're sterile or they die."	there's probably a lot of specifics that will have to be solved."
Yamashita and Jagannathan	bred the flies together, then studied the	For now, the researchers plan to continue investigating the roles of
tissues of the offspring to	see what was leading these "unhappy"	satellite DNA in the cell, armed with their new knowledge of the
hybrids to drop like flies.	Right away they noticed something	part it plays in speciation.
interesting: "When we look	ted at those hybrid tissues, it was very	"To me, the surprising part of this paper is that our hypothesis was
clear that their phenotype	was exactly the same as if you had	correct," Jagannathan said. "I mean, in retrospect, there are so many
disrupted the satellite DNA	[-mediated chromosomal organization]	ways things could have been inconsistent with what we
of a pure species," Yama	ashita said. "The chromosomes were	hypothesized, so it's kind of amazing that we've sort of been able to
scattered, and not encapsula	ted in a single nucleus."	chart a clear path from start to finish."
Furthermore, the researcher	rs could create a healthy hybrid fly by	More information: Madhav Jagannathan et al, Defective Satellite DNA Clustering into Chromocenters Underlies Hybrid Incompatibility in Drosophila, Molecular Biology and
mutating certain genes	in the parent flies called "hybrid	Evolution (2021). <u>DOI: 10.1093/molbev/msab221</u>
incompatibility genes," wh	ich have been shown to localize to	Madhav Jagannathan et al, Comparative Analysis of Satellite DNA in the Drosophila
satellite DNA in the cells of	pure species.	<i>melanogaster Species Complex, G3 Genes/Genomes/Genetics (2017).</i> <u>DOI:</u> 10.1534/93.116.035352
Via these experiments, the	researchers were able to demonstrate	Madhav Jagannathan et al, A conserved function for pericentromeric satellite DNA, eLife
how these genes affect ch	romosomal packaging in hybrids, and	(2018). <u>DOI: 10.7554/eLife.34122</u>
pinpoint the cellular phenot	types associated with them for the first	Drosophila, eLife (2019). DOI: 10.7554/eLife.43938
time. I think for me, that I	s probably the most critical part of this	Journal information: Molecular Biology and Evolution, eLife
paper, Jagannathan said.		
Taken together, these finding	ngs suggest that because satellite DNA	

	8/30/21	Name	
		https://wb.	md/3 <u>BfqvYa</u>
Plast	ic Barri	ers May No	t Stop COVID-19 Spread,
		Expe	rts Say
May no	ot help, a	nd in fact, coi	ıld make the situation worse by
-	_	blocking no	rmal air flow

Carolyn Crist

Plastic barriers that separate people in stores, restaurants, and classrooms may not be as effective at stopping the spread of COVID-19 as originally thought, according to The New York Times Scientists who study air flow, ventilation and aerosol droplets say the barriers may not help, and in fact, could make the situation worse by blocking normal air flow, the newspaper reported.

Typically, as people interact and breathe in a room, currents and ventilation systems recirculate the air and disperse the exhaled particles. With plastic barriers, however, particles could get trapped in "dead zones" and build up.

interfere with proper ventilation of that room," Linsey Marr, professor of civil and environmental engineering at Virginia Tech, on the actual flow and air distribution in a room." told the newspaper. "Everybody's aerosols are going to be trapped and stuck there and building up, and they will end up spreading beyond your own desk," she said.

Several variables factor into the efficacy of plastic barriers, The New York Times reported. Shields may stop big respiratory droplets from coughs and sneezes, for instance, but they may not do much to prevent small aerosol particles from viruses such as COVID-19 from spreading.

"We have shown this effect of blocking larger particles, but also that the smaller aerosols travel over the screen and become mixed in the room air within about five minutes," Catherine Noakes, a professor of environment engineering at the University of Leeds, told the newspaper. "This means if people are interacting for more Student number

than a few minutes, they would likely be exposed to the virus regardless of the screen," she said.

The effectiveness of plastic barriers likely also depends on the location and setup, the newspaper reported. A bus driver with a large barrier, for instance, may be able to avoid inhaling the particles that passengers are exhaling. A bank cashier or store clerk behind a large barrier may also be partly protected.

Even still, scientists say more research is needed. For instance, taller barriers are more likely to be effective. However, a large number of barriers in one room could likely block air flow.

> Researchers have recommended that schools and offices focus on ventilation, masks, and vaccines to slow the spread of the coronavirus.

"Air flow in rooms is pretty complicated," Richard Corsi, dean of engineering at the University of California at Davis, told the newspaper. "Every room is different in terms of the arrangement of "If you have a forest of barriers in a classroom, it's going to furniture, the height of the walls and ceilings, the vents, where the bookshelves are," he said. "All of these things have a huge impact

Source: The New York Times: "Those Anti-Covid Plastic Barriers Probably Don't Help and May Make Things Worse."

https://go.nature.com/3BdEFt4

So much ice is melting that Earth's crust is moving As the continents' frozen burden dissipates, the ground deforms — not only in the immediate area, but also in far-flung locations. The loss of melting ice from land masses such as Greenland and Antarctica is causing the planet's crust to warp slightly, even in spots more than 1,000 kilometres from the ice loss.

Ice melt removes mass from Earth's continents. Liberated from the overlying weight, land that was once covered by ice lifts up. This vertical response has been much studied, but Sophie Coulson at Harvard University in Cambridge, Massachusetts, and her

3

Student number

colleagues wanted to analyse how the ground shifts horizontally. French Guiana, until they'd found nests from six different species They gathered satellite data on ice loss from Greenland, Antarctica, in the genus *Polistes*. When fed a steady stream of ultraviolet rays, mountain glaciers and ice caps, and combined them with a model of all of the nests glowed, each with a bit of regional flair: The four how Earth's crust responds to changes in mass. from Vietnam all pulsed in green, while the other two, from Europe Between 2003 and 2018, ice melting from Greenland and from and South America, were a more muted teal-ish blue. "Finding this Arctic glaciers caused the ground to shift horizontally across much in so many species, and across three different continents, is of the Northern Hemisphere, and by as much as 0.3 millimetres a remarkable," Swanne Gordon, an evolutionary biologist at

year in much of Canada and the United States. In some areas, even Washington University in St. Louis, who studies insect signaling far from the melting ice, the horizontal movement was greater than and wasn't involved in the study, told me.

the vertical movement. Geophys. Res. Lett. (2021)

https://bit.ly/3mGNRSq

This Wasp Nest of Mine, I'm Gonna Let It Shine Under ultraviolet light, the silk that covers the base of paper-wasp nests turns neon green.

By Katherine J. Wu

On a muggy spring night in 2016, the chemist Bernd Schöllhorn openings of the hexagonal cells at was tromping alone through a forest in northern Vietnam. Into the each nest's base. inky darkness, he raised a black light-and saw an extraordinarily

bright shape winking at him in eerie shades of yellowish green. "I thought it was somebody else," Schöllhorn, a researcher at the University of Paris, told me. But when he cut his own light, the stranger's torch instantly extinguished as well. Schöllhorn pushed his way through the vegetation until he reached the source of the glow: a geometric, open-combed nest of a paper-wasp colony.

"It was just incredible," Schöllhorn recalled. Bathed in ultraviolet rays from his flashlight, the nest looked as though it had been dipped in a vat of highlighter ink, so bright and Day-Glo green that

the inches-wide structure was visible from some 60 feet away. The wasps' home, Schöllhorn realized, was <u>fluorescing</u>, as though wasp silk appears whitish or yellowish and is decidedly matte. But prepping for an entomological rave. And he had no idea why.

Over the next several years, Schöllhorn and his colleagues searched for paper wasps in other parts of Vietnam, then in France and ensemble.

The wasps themselves didn't light up; neither did the topmost parts

of the nests, constructed out of chewed-up wood (hence the "paper" moniker). The glow, the researchers found, came from a layer of silk stitched across the

Bernd Schöllhorn and Serge Berthier

Scientists hadn't pinpointed this silk as fluorescent before. Its primary purpose is to cocoon young paper wasps during their metamorphosis, when larvae "dissolve their bodies" and reform themselves into adults, Sara Miller, a paper-wasp expert at Cornell University, told me. What's inside the sealed cell is "really like a bag of mush," Miller said. The larvae excrete silk out of a gland, and it shields the pupa from the ravages of reality-predators, pathogens, harsh weather conditions-much like a chrysalis protects a butterfly-to-be.

In the light of the forest, when viewed with human eyes, paperwhen fed ultraviolet light in the lab, the string-like fibers convert those rays into a fluorescence funky enough for an '80s aerobics

Especially staggering was the silk's capacity for shine. In the lab, already ace at navigation. The silk is also ablaze for only part of the Schöllhorn's team calculated each nest's quantum yield, or its nesting cycle, after eggs had been laid and hatched.

capacity to emit light when fed a certain number of photons. "Those A more intriguing hypothesis, experts told me, might hinge on the kinds of measurements are tricky to get," especially from flora and fauna, Carlos Taboada, who studies glowy amphibians at Duke University, told me.

The few quantum yields that researchers have managed to glean from fluorescent animals tend to fall between 0.3 and 12.5 percent; a few years ago, Taboada <u>uncovered frogs</u> that shone near the top of that range. The brightest nest the researchers collected, a *Polistes* expert at the University of Rochester who wasn't involved in the study, told me. That could come in handy, she said, for nests that hang at the edges of forests, where the vegetation is sparse and the structures are constantly flooded with sunlight.

brunetus creation from Vietnam, registered a whopping 35 percent. But Uy also told me that she hasn't yet seen evidence of "That is incredibly large for a biological tissue," Taboada, who wasn't involved in the new study, said.

The silk's beguiling glow, the researchers confirmed, falls in the range of wavelengths that wasp eyes can see. "They're very sensitive to green," Schöllhorn told me. But it's not yet clear what purpose the fluorescence serves for the insects, if any at all. Plenty of things will glow under black lights, if given the chance. That doesn't guarantee that these glimmers are more than a coincidence of physics.

"It's still possible this is just an incidental by-product of how the silk is made," Liz Tibbetts, a paper-wasp expert at the University of Michigan who wasn't involved in the study, told me. "We're walking around with blinders on." Terrestrial fluorescence might not be so rare at all; we just haven't been searching for it.

Schöllhorn and his colleagues haven't yet figured out whether the silk's glow-stick effect is important to the wasps, or exactly how the larvae cook it up. The fluorescent molecules could be dietary, for instance, or entirely of the insects' own making.

Still, Schöllhorn thinks the glow probably has *some* role to play. all, and snakes, spiders, insects everywhere." He's gotten used to it, One possibility is that it serves as a sort of psychedelic beacon for though, and the rewards are always worth the trek.

work-weary wasps staggering back home. Several of the insect The next great glower won't be found unless someone is willing to experts I talked with were a little hesitant to embrace this idea, look.

because paper wasps, which are famously detail-oriented, are

6	8/30/21	Name		Student number
		https://bit.ly/3	<u>3Dmhhv5</u>	"We had naively thought that ants perhaps were playing Jenga, that
Ants use soil physics to excavate metre-long tunnels			avate metre-long tunnels	they were tapping, maybe they were wiggling grains, maybe they
		that last d	lecades	were even grabbing the grains of least resistance," says
An	t colonies can	descend several	l metres underground, house	Andrade. He says it is now clear that the ants appear to know
m	illions of insec	ts and last for a	lecades, despite being made	nothing about forces and show no signs of decision-making, but
W	ithout the bene	fit of machiner	ry and reinforcing material.	instead follow a very simple behavioural algorithm that has evolved
		By <u>Matthew</u>	<u>Sparkes</u>	over time.
The s	secrets of these	e impressive ar	chitectural structures are being	The ants tend to dig relatively straight tunnels that descend at the
reveal	led by three-	dimensional X	K-ray imaging and computer	angle of repose – the slope at which a granular material naturally
simul	ations, and cou	ld be used to de	evelop robotic mining machines.	forms mounds – which was around 40 degrees in this case. They
José	Andrade at th	e California In	stitute of Technology and his	also pick exactly the right grains to remove to create a protective
collea	igues set up mi	niature ant colo	onies in a container holding 500	arch above.
millil	itres of soil ar	nd 15 western	harvester ants (Pogonomyrmex	"In a remarkable way – in a rather, you know, serendipitous way –
occid	entalis). The po	osition of every	ant and every grain of soil was	they've stumbled upon a technique for digging that is in line with
then o	captured by high	h-resolution X-	-ray scans every 10 minutes for	the laws of physics, but incredibly efficient," says Andrade.
20 ho	urs.			The team believes that if the behavioural algorithm can be further
The X	K-ray results ga	ve researchers	exact details about the shape of	analysed and ultimately replicated, then it may find application in
each	tunnel and whi	ch grains were	being removed to create it. The	automated mining robots, either here on Earth or on other planetary
team	then created	a computer	model using those scans to	bodies where the already risky business of mining would be even
under	stand the force	s acting upon t	he tunnels. The size, shape and	more dangerous for humans.
orient	ation of every	grain was re	created in the model and the	Journal reference: Proceedings of the National Academy of Sciences, <u>DOI:</u> 10.1073/pmas.2102267118
direct	ion and size	of force on ea	ach grain could be calculated,	https://bit.lv/2.WoGeW4
incluc	ling gravity, fi	riction and cohe	esion caused by humidity. The	First 3D-bionrinted structured Wagyu heef-like meat
mode	l was accurate	to the 0.07 milli	imetre resolution of the scanner.	3D printing a most alternative containing muscle fat and blood
The r	esults suggest	that forces with	in the soil tend to wrap around	sD-printing a meat alternative containing mascie, jui, and biood
the to	unnel axis as	ants excavate,	, forming what the team call	Scientists from Osaka University used stem calls isolated from
"arch	es" in the soil	that have a gr	reater diameter than the tunnel	Wagyu cows to 3D-print a meat alternative containing muscle fat
itself.	This reduces	the load acting	on the soil particles within the	and blood vessels arranged to closely resemble conventional steaks
arche	s, where the an	ts are construct	ing their tunnel. As a result, the	This work may help usher in a more sustainable future with widely
ants c	can easily remo	ove these particl	les to extend the tunnel without	available cultured meat Wagyu can be literally translated into
causii	ng cave-ins. T	he arches also	make the tunnel stronger and	"Japanese cow," and is famous around the globe for its high content
more	durable.			

Name

Student number

of intramuscular fat, known as marbling or sashi. This marbling but to also make subtle adjustments to the fat and muscle provides the beef its rich flavors and distinctive texture.

However, the way cattle are raised today is often considered to be

unsustainable in light of its outsized contribution to climate emissions. Currently, the available "cultured meat" alternatives only consist primarily of poorly organized muscle fiber cells that fail to reproduce the complex structure of real beef steaks.

Credit: Osaka University

Now, a team of scientists led by Osaka University have used 3D-Printing to create synthetic meat that looks more like the real thing "Using the histological structure of Wagyu beef as a blueprint, we have developed a 3D-printing method that can produce tailor-made complex structures, like muscle fibers, fat, and blood vessels," lead author Dong-Hee Kang says. To overcome this challenge, the team started with two types of stem cells, called bovine satellite cells and adipose-derived stem cells. Under the right laboratory conditions, these "multipotent" cells can be coaxed to differentiate into every type of cell needed to produce the cultured meat.

Individual fibers including muscle, fat, or blood vessels were fabricated from these cells using bioprinting. The fibers were then arranged in 3D, following the histological structure, to reproduce the structure of the real Wagyu meat, which was finally sliced perpendicularly, in a similar way to the traditional Japanese candy Kintaro-ame. This process made the reconstruction of the complex meat tissue structure possible in a customizable manner. "By improving this technology, it will be possible to not only reproduce complex meat structures, such as the beautiful sashi of Wagyu beef,

components," senior author Michiya Matsusaki says. That is, customers would be able to order cultured meat with their desired amount of fat, based on taste and health considerations.

More information: Dong-Hee Kang et al, Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting, Nature Communications (2021). DOI: 10.1038/s41467-021-25236-9

https://bit.ly/3jirilc

Geneticists map the rhinoceros family tree Solving a question going back to Darwin's time about the relationships among the world's five living rhinoceros species

There's been an age-old question going back to Darwin's time about the relationships among the world's five living rhinoceros species. One reason answers have been hard to come by is that most rhinos went extinct before the Pleistocene.

This illustration shows a paleoartist's reconstruction of the three extinct rhinoceros species whose genomes were sequenced as part of the study. In the foreground is a Siberian unicorn (Elasmotherium sibiricum), and close behind are two Merck's rhinoceroses (Stephanorhinus kirchbergensis). In the far background is a woolly rhinoceros (Coelodonta antiquitatis). Credit: Beth Zaiken

Now, researchers reporting in the journal Cell on August 24 have helped to fill the gaps in the rhino evolutionary family tree by analyzing genomes of all five living species together with the genomes of three ancient and extinct species.

The findings show that the oldest split separated African and Eurasian lineages about 16 million year ago. They also find thatwhile dwindling populations of rhinos today have lower genetic diversity and more inbreeding than they did in the past-

8 8/30/21

Name

Student number

rhinoceroses have historically had low levels of genetic diversity. "We can now show that the main branch in the rhinoceroses' tree of decrease in population size over the last 2 million years, or life is among geographic regions, Africa versus Eurasia, and not continuously small population sizes over extended time periods," between the rhinos that have one versus two horns," says Love said Mick Westbury of the University of Copenhagen, Denmark. Dalén of the Centre for Palaeogenetics and the Swedish Museum of "Continuously low population sizes may indicate that rhinoceroses Natural History. "The second important finding is that all in general are adapted to low levels of diversity." rhinoceroses, even the extinct ones, have comparatively low genetic This notion is consistent with an apparent lack of accumulated diversity. To some extent, this means that the low genetic diversity deleterious mutations in rhinos in recent decades. Westbury says we see in present-day rhinos, which are all endangered, is partly a that rhinos may have purged deleterious mutations in the last 100 consequence of their biology.

generated every 100 kb across the genome using maximum likelihood methods and multiple fossil calibrations as detailed in STAR Methods. Blue horizontal bars show 95% confidence intervals of estimated divergence dates between lineages. Black crosses indicate extinct species.

"All eight species generally displayed either a continual but slow

years, allowing them to remain relatively healthy, despite low genetic diversity.

The new study was inspired at a scientific meeting. Dalén and Tom Gilbert, University of Copenhagen, had been working separately on different rhino species. They realized that if they joined forces, along with colleagues around the world, they could do a comparative study of all living rhinos together with the three species that went extinct during the last Ice Age.

There were some challenges to overcome, says Shanlin Liu, China Agricultural University, Beijing. "When we decided to put together all the rhinoceroses' data and conduct a comparative genomics study, we also confronted the 'big data' problem," Liu explained.

The genome data represented different data types, in part due to the inclusion of both modern and ancient DNA. The team had to develop new analysis tools to take those differences into account. The new approaches and tools they developed can now be applied to studies in other taxonomic groups.

Dalén says that the findings are "partly good news, and partly not." (A) Dated species tree of the Rhinocerotidae based on a consensus of trees It appears that low levels of genetic diversity in rhinos is part of their long-term history and hasn't led to an increase in health problems related to inbreeding and disease-causing mutations.

> "However, we also find that present-day rhinos have lower genetic diversity, and higher levels of inbreeding, compared to our

8/30/21

Student number

historical and prehistoric rhinoceros genomes," he says. "This suggests that recent population declines caused by hunting and habitat destruction have had an impact on the genomes. This is not good, since low genetic diversity and high inbreeding may increase the risk of extinction in the present-day species." Until recently, scientists believed modern humans left Africa in one enormous exodus around 65,000 years ago. But a new climate model suggests that modern

The findings do have some practical implications for rhino humans had several windows of conservation, the re-searchers say. https://www.applications.com/applications/applica

"Now we know that the low diversity we see in contemporary individuals may not be indicative of an inability to recover, but instead a natural state of rhinoceros," Westbury says. "We can better guide recovery programs to focus on increasing population size rather than individual genetic diversity."

The team hopes that the new findings will be useful for continued study of rhinoceroses and their conservation. Dalén reports that his team is now working on a more in-depth study of the extinct woolly rhinoceros. Meanwhile, Westbury is involved in comparing the genomes of African black rhinoceros sampled from before the recent decrease in <u>population size</u> to those of contemporary individuals.

"We hope that this will provide a framework to better understand where translocated populations may have arisen from, direct changes in genetic diversity, and whether any populations may have been lost forever because of humans," Westbury said.

More information: Cell, Liu et al.: "Ancient and modern genomes unravel the evolutionary history of the rhinoceros family" <u>www.cell.com/cell/fulltext/S0092-</u>8674(21)00891-6, DOI: 10.1016/j.cell.2021.07.032

https://nyti.ms/2WvhnQk

A Shifting Climate Gave Humans Many Opportunities to Leave Africa

A new paleoclimate model finds many favorable windows when Homo sapiens might have survived a migration out of Africa. By <u>Sabrina Imbler</u>

A cast of the skull of Herto Man, a 160,000 to 154,000-year-old human specimen discovered in Ethiopia in 1997. Credit... imageBROKER/Alamy The research, published Tuesday in the journal <u>Nature</u> <u>Communications</u>, reconstructed the climate of northeastern Africa over the last 300,000 years. The scientists identified when there would have been enough rainfall to allow a group of huntergatherers to survive the journey to the Arabian Peninsula.

Archaeological and genetic data still support the idea that all non-African people descended from a single migration that left the continent between 50,000 and 80,000 years ago. But the new paper bolsters the theory that Homo sapiens had multiple migrations out of Africa.

Even if various groups succeeded in leaving the continent, they may not each have played a large role in populating the world. An earlier constellation of fossils, some with contested dating, highlights some of Homo sapiens's false starts: part of a middle finger from <u>85,000 years ago</u>, found in Arabia; a human jawbone from at least <u>177,000 years ago</u>, found in Israel; a skull from possibly <u>210,000 years ago</u>, found in Greece.

It is inviting to extrapolate the timing and paths of these early journeys from these archaeological records. But the fossils offer "limited, rather gappy lines of evidence" of possible migrations, said Andrea Manica, an evolutionary ecologist at the University of Cambridge and an author on the new paper. Dr. Manica believes an

10 8/30/21 Name Student r	number
ecological model could tackle the question from a new angle: first good times an	nd bad times," Dr. Manica said.
predict what would have been possible, then see if the fossils line They looked	at distribution maps of present-day hunter-gatherers
up. and found the	hat human populations are generally not recorded in
"It's an intriguing question to ask whether there were areas where	precipitation falls below 3.5 inches of rain per year.
environmental thresholds for those earlier dispersals, even though Rainfall this	trifling is not enough to sustain green patches of reeds,
those dispersals may have been limited or short-lived," said Rick grasses and s	hrubs that feed the grazing animals that early humans
Potts, a paleoanthropologist who directs the Human Origins may have dep	pended on.
Program at the Smithsonian National Museum of Natural History. Once the rese	earchers set the threshold of survivability at 3.5 inches,
"The new paper grasps the important thing," said Dr. Potts, who they overlaid	their climate reconstructions to see when conditions
was not involved with the research. "There were multiple instances might have b	een sweet enough to travel through two possible routes
of our species' dispersal beyond Africa prior to the main one." into Eurasia:	the Sinai Peninsula up north and, further south, the
Jessica Tierney, a paleoclimatologist at the University of Arizona Strait of Bab	-el-Mandeb, which separates the Horn of Africa from
who also was not involved with the research, said she found the contemporary	y Yemen.
approach interesting but inconclusive. "Ultimately this is a model, Their model	revealed a handful of historical windows during which
not geology or archaeology," Dr. Tierney said. "The mystery there was end	ough rainfall and relatively low sea levels to sustain a
remains until you have better and more paleoenvironmental human migra	tion out of Africa. The Sinai land bridge was crossable
records." several times	, as early as 246,000 years ago, and the southern strait
Dr. Manica and Robert Beyer, a researcher at the Potsdam Institute had even me	ore favorable windows, including the period 65,000
for Climate Impact Research in Germany, first devised their years ago.	
ecological approach in 2018. Scientists had already modeled the The sheer nu	mber of crossing opportunities surprised Dr. Manica,
climate as far back as <u>125,000 years</u> , but Dr. Manica and Dr. Beyer given the ro	bust evidence suggesting that only the recent mass
wanted to go back to the date of the earliest anatomically modern exodus had p	beopled the world with Homo sapiens. "I was hoping,
human fossils, which were found in Morocco and are estimated to maybe naïvel	ly, that period would just be perfect, where everything
be at least 300,000 years old. was right," I	Dr. Manica said. "But everything was right before as
"That's the moment when you see our species actually existed," Dr. well. Several	times, for a matter of fact."
Manica said. Mario Krapp, a research fellow at Antarctica New So the quest	ion still stands: If some Homo sapiens were able to
Zealand and an author on the paper, developed an emulator for the colonize Eura	asia far earlier, why were they not successful?
existing climate model to go back deeper into time. The research	ers have some theories. If early humans could have
To predict when Homo sapiens feasibly could have moved through moved out of	of Africa much earlier, they would have faced stiff
northeastern Africa and the Arabian Peninsula, the researchers competition	from other early human species; the north was a

needed to find out the absolute minimal conditions in which Neanderthal stronghold, and much of East Asia was likely humans could survive. "We wanted to build up this catalog of the populated by another extinct human lineage, the Denisovans. The

Student number

models also suggest that dry periods often followed the favorable interesting research question, in Dr. Potts' eyes, is what dispersal windows, which could have isolated any populations undertaking paths would have been available in these windows of more an exodus. But the authors also note that even if times were good abundant rainfall.

and wet, humans may not have taken advantage of these periods to Perhaps the largest question still remains unanswered. "More and migrate out. more evidence suggests we did this multiple times," Dr. Beverly

vegetation and topography that exists on the ground.

Dr. Tierney, the paleoclimatologist, said the new paper's climate email. "What lies beneath those sandy deserts?" Nile River is always there. They could move out that way almost

any time." Similarly, Emily Beverly, an earth scientist at the University of Houston who was not involved with the research, said the authors

did not consider the existence of freshwater springs that could have served as a source of potable water for migrating humans during dry periods.

On the other hand, Dr. Potts, the paleoanthropologist, noted that the minimum level of rainfall in the model would have been "far too low" to allow hunter-gatherers to successfully disperse out of Africa. Dr. Potts pointed to previous research suggesting that early humans could only have dispersed in the continent when the mean average rainfall was more than 3.9 inches per year, and typically dispersed when there was at least 10 inches of rain. The more

The model had to make several assumptions, including that the said. "The question I'm always left with is, Why?" southern strait would always have been crossable by humans and Abdullah Alsharekh, an archaeologist at King Saud University in that those people might have had the boat technology to make the Riyadh, Saudi Arabia, who was not involved with the research, said crossing. The model breaks down the geography of the region to a he appreciated the paper's examination of the prehistoric Arabian grid with a resolution with half a degree latitude and longitude, or climate. "The last couple of decades have shown that many of our around 30 miles. This approach inevitably ignores the mosaic of questions about out-of-Africa models can be greatly enhanced by

more on-the-ground research in Arabia," Dr. Alsharekh wrote in an

models were too simple to predict what climate change was like Dr. Manica has a similar hope, that future archaeological hundreds of thousands of years ago. She also questioned some of excavations and genetic investigations will shed more light on the rules of the model, such as humans only being able to migrate Homo sapiens's staggered foray out of Africa: both the earlier, alongside a minimum level of rainfall. "I guess it makes sense to seemingly unsuccessful waves and the main migration that make that assumption," Dr. Tierney said. "On the other hand, the unleashed Homo sapiens to irrevocably alter the rest of the world.

https://bit.ly/3DprugO

Like Venom Coursing Through the Body: Mechanism **Driving COVID-19 Mortality Identified**

Researchers have identified what may be the key molecular mechanism responsible for COVID-19 mortality – an enzyme related to neurotoxins found in rattlesnake venom.

An enzyme with an elusive role in severe inflammation may be a key mechanism driving COVID-19 severity and could provide a new therapeutic target to reduce COVID-19 mortality, according to a study published in the Journal of Clinical Investigation.

Researchers from the University of Arizona, in collaboration with Stony Brook University and Wake Forest University School of Medicine, analyzed blood samples from two COVID-19 patient cohorts and found that circulation of the enzyme - secreted

12 8/30/21 Name	Student number
phospholipase A2 group IIA, or sPLA2-IIA - may be the most data	a from 127 patients hospitalized at Stony Brook University
important factor in predicting which patients with severe COVID- betw	ween January and July 2020. A second independent cohort
19 eventually succumb to the virus. inclu	luded a mix of 154 patient samples collected from Stony Brook
sPLA2-IIA, which has similarities to an active enzyme in and	Banner University Medical Center in Tucson between January
rattlesnake venom, is found in low concentrations in healthy and	l November 2020.
individuals and has long been known to play a critical role in "The	nese are small cohorts, admittedly, but it was a heroic effort to
defense against bacterial infections, destroying microbial cell get t	them and all associated clinical parameters from each patient
membranes. unde	ler these circumstances," Chilton said. "As opposed to most
When the activated enzyme circulates at high levels, it has the stude	dies that are well planned out over the course of years, this was
capacity to "shred" the membranes of vital organs, said Floyd (Ski) happ	opening in real time on the ICU floor."
Chilton, senior author on the paper and director of the UArizona The	e research team was able to analyze thousands of patient data
Precision Nutrition and Wellness Initiative housed in the poin	nts using machine learning algorithms. Beyond traditional risk
university's College of Agriculture and Life Sciences. facto	tors such as age, body mass index and preexisting conditions, the
"It's a bell-shaped curve of disease resistance versus host team	m also focused on biochemical enzymes, as well as patients'
tolerance," Chilton said. "In other words, this enzyme is trying to level	els of lipid metabolites.
kill the virus, but at a certain point it is released in such high "In t	this study, we were able to identify patterns of metabolites that
amounts that things head in a really bad direction, destroying the were	re present in individuals who succumbed to the disease," said
patient's cell membranes and thereby contributing to multiple organ lead	d study author Justin Snider, an assistant research professor in
failure and death." the	UArizona Department of Nutrition. "The metabolites that
Together with available clinically tested sPLA2-IIA inhibitors, "the surfa	faced revealed cell energy dysfunction and high levels of the
study supports a new therapeutic target to reduce or even prevent sPLA	A2-IIA enzyme. The former was expected but not the latter."
COVID-19 mortality," said study co-author Maurizio Del Poeta, a Usin	ing the same machine learning methods, the researchers
SUNY distinguished professor in the Department of Microbiology deve	veloped a decision tree to predict COVID-19 mortality. Most
and Immunology in the Renaissance School of Medicine at Stony heal	lthy individuals have circulating levels of the sPLA2-IIA
Brook University. enzy	cyme hovering around half a nanogram per milliliter. According
Collaboration Amid Chaosto the	the study, COVID-19 was lethal in 63% of patients who had
"The idea to identify a potential prognostic factor in COVID-19 seve	ere COVID-19 and levels of sPLA2-IIA equal to or greater than
patients originated from Dr. Chilton," Del Poeta said. "He first 10 n	nanograms per milliliter.
contacted us last fall with the idea to analyze lipids and metabolites "Ma	any patients who died from COVID-19 had some of the highest
in blood samples of COVID-19 patients."	els of this enzyme that have ever been reported," said Chilton,
Del Poeta and his team collected stored plasma samples and went to who	o has been studying the enzyme for over three decades.
work analyzing medical charts and tracking down critical clinical An J	Enzyme with a Bite

13 8/30/21 Name	Student number
The role of the sPLA2-IIA enzyme has been the subject of study for	"This work opens new opportunities to discover how the network
half of a century and it is "possibly the most examined member of	organization of the brain optimizes cognitive capacity," write the
the phospholipase family," Chilton explained.	researchers from The Neuro (Montreal Neurological Institute-
Charles McCall, lead researcher from Wake Forest University on	Hospital) and the Quebec Artificial Intelligence Institute, Quebec,
the study, refers to the enzyme as a "shredder" for its known	Canada.
prevalence in severe inflammation events, such as bacterial sepsis,	Senior investigator Bratislav Misic, PhD, said the research has
as well as hemorrhagic and cardiac shock.	potential clinical application for studying diseases of the brain,
Previous research has shown how the enzyme destroys microbial	which is something his team is actively working on.
cell membranes in bacterial infections, as well as its similar genetic	"For example, using MRI techniques, we can measure different
ancestry with a key enzyme found in snake venom.	patterns of atrophy in neurodegenerative diseases such as
The protein "shares a high sequence homology to the active enzyme	Alzheimer's disease," Misic told Medscape Medical News.
in rattlesnake venom and, like venom coursing through the body, it	"We can use these disease patterns from real patients to artificially
has the capacity to bind to receptors at neuromuscular junctions and	lesion these connectomes and to ask how a particular disease causes
potentially disable the function of these muscles," Chilton said.	a particular pattern of symptoms and cognitive deficits," he added.
"Roughly a third of people develop long COVID, and many of	The findings were <u>published online</u> August 9 in <i>Nature Machine</i>
them were active individuals who now can't walk 100 yards. The	Intelligence.
question we are investigating now is: If this enzyme is still	Unique Approach
relatively high and active, could it be responsible for part of the	Using brain imaging data, the investigators reconstructed a human
long COVID outcomes that we're seeing?"	brain connectivity pattern and applied it to an artificial neural
Reference: "Group IIA Secreted Phospholipase A2 is Associated with the Pathobiology Leading to COVID-19 Mortality" by Justin M Snider, Jeehvun Karen You, Xia Wang,	network (ANN).
Ashley J. Snider, Brian Hallmark, Manja M. Zec, Michael C. Seeds, Susan Sergeant,	After training, the ANN successfully performed a working memory
Laurel Johnstone, Qiuming Wang, Ryan Sprissler, Tara F. Carr, Karen Lutrick, Sairam	task more flexibly and efficiently than other "benchmark" AI
Hannun, Stefano Guerra, Charles E. McCall, Guang Yao, Maurizio Del Poeta and Floyd	systems.
H. Chilton, 24 August 2021, Journal of Clinical Investigation. DOI: 10.1172/JCI149236	The researchers note that their approach is unique because previous
<u>https://wb.md/3Dm4yZq</u>	work on brain connectivity, also known as connectomics, has
Human Brain Patterns May Help Build a Better AI	focused on describing brain organization without regard to how it
System	actually functions.
Artificial intelligence (AI)–powered neural networks modeled on	I raditional AININS have arbitrary structures that do not reflect now
real human brain connectivity patterns perform cognitive tasks	into the construction of ANNs con reveal how the wiring of the
better than traditional AI systems, new research suggests.	brain supports specific cognitive skills the investigators write
Megan Brooks	"Up until now if you look at how neural networks are constructed
	op unin now, it you look at now incutal inclusions are constructed,

14

Student number

the architectures that are used are very ad hoc and very problem colleagues identified the ancient contraband as *Tupandactylus* specific," Misic said. *navigans*, which lived more than 100 million years ago. Soft tissue

including the human brain," Misic added.

He noted that the researchers took wiring patterns of the real human The pterosaur's forelimbs would brain and implemented it as an ANN. They then "trained that have unfolded to an impressive 2.7network to perform a very simple cognitive task, and when you metre wingspan. The presence of a compare it to other benchmark architectures, it actually does structure called a notarium, which better," he said. braces the skeleton against the

This shows that there is "something fundamentally different about considerable forces generated by how the human brain is wired up and that the design principles that wing-flapping, shows that the we can see in the human brain could be used to potentially build animal almost certainly flew.

better artificial networks," Misic concluded.

Funding for the research was provided by the Canada First Research Excellence Fund, awarded to McGill University for the Healthy Brains, Healthy Lives initiative, and by the Natural Sciences and Engineering Research Council of Canada, Fonds de Recherche du Ouebec – Santé, the Canadian Institute for Advanced Research, Canada Research Chairs, Fonds de Recherche du Quebec – Nature et Technologies, and the Centre UNIQUE (Union of Neuroscience and Artificial Intelligence). The investigators have reported no relevant financial relationships.

Nat Mach Intell. Published online August 9, 2021. Abstract

https://go.nature.com/2Wnfvcd

A plundered pterosaur reveals the extinct flyer's extreme headgear

A seized fossil reveals the full glory of a winged reptile from the age of the dinosaurs.

When police busted a fossil-smuggling operation at Brazil's largest port, they recovered six yellowish limestone slabs — in which the nearly complete remains of an extinct winged reptile called a pterosaur were embedded. What's more, this pterosaur species was formerly known only from skulls.

Victor Beccari at the University of São Paulo, Brazil, and his

"But the connectomics revolution that's happened in neuroscience rarely fossilizes, but the specimen boasts soft-tissue remains of over the past 20 years or so has given us the ability to really nearly all of the reptile's imposing head crest, which is five times measure and trace out connection patterns in a variety of organisms, taller than its skull. The fossil also reveals the animal's large bladeshaped chin crest.

A newly described fossil of the pterosaur Tupandactylus navigans (artist's impression) preserves the soft tissue of its huge head crest, which might have *made it clumsier in the air*. Credit: Victor Beccari

But its long neck and forelimbs, and its cumbersome crest, hint that it flew only for short distances. Much of its time might have been spent foraging on the ground, as if it were a massive chicken. PLoS ONE (2021)

https://bit.lv/3mCixIN

Oldest genome from Wallacea shows previously unknown ancient human relations

Portions of the genome did not match these groups. This brings new surprises about the evolution of modern humans.

The oldest genome of a modern human from the Wallacea region the islands between western Indonesia and Papua New Guineaindicates a previously undescribed ancient human relationship. Researchers were able to isolate sufficient genetic material from the skull of an individual buried more than 7,000 years ago on the Indonesian island of Sulawesi. It belonged to a hunter-gatherer

8/30/21

Student number

society and was interred at the site now called Leang Panninge ('Bat DNA from the petrous bone of the skull. "It was a major challenge, Cave'). A large part of the genetic code matched that of today's as the remains had been strongly degraded by the tropical climate," Papua New Guineans and Aboriginal Australians. Yet portions of she says. The analysis showed that the Leang Panninge individual the genome did not match these groups. This brings new surprises was related to the first modern humans to spread to Oceania from about the evolution of modern humans. Eurasia some 50,000 years ago. Like the genome of the indigenous

The international study was accomplished through close inhabitants of New Guinea and Australia, the Leang Panninge collaboration with several researchers and institutions from individual's genome contained traces of Denisovan DNA. The Indonesia. It was headed by Professor Johannes Krause of the Max Denisovans are an extinct group of archaic humans known Planck Institutes for Evolutionary Anthropology in Leipzig and the primarily from finds in Siberia and Tibet. "The fact that their genes Science of Human History in Jena, Professor Cosimo Posth of the are found in the hunter-gatherers of Leang Panninge supports our Senckenberg Centre for Human Evolution and Palaeoenvironment earlier hypothesis that the Denisovans occupied a far larger at the University of Tübingen, and Professor Adam Brumm of geographical area," says Johannes Krause. Griffith University, Australia. The study has been published in the **Another piece in the great genetic puzzle** latest edition of *Nature*.

Almost completely preserved skeleton

The Wallacean Islands formed stepping stones in the spread of the individual provided further clues—that first modern humans from Eurasia to Oceania, probably more than data showed no traces of Denisovan 50,000 years ago. Archaeological finds show that the ancestors of DNA. "The geographic distribution of our species lived in Wallacea as early as 47,000 years ago. Yet few Denisovans and modern humans may human skeletons have been found. One of the most distinctive have overlapped in the Wallacea region. archaeological discoveries in this region is the Toalean technology It may well be the key place where complex, dated to a much more recent period between 8,000 and Denisova people and the ancestors of 1,500 years ago. Among the objects manufactured by the people of indigenous Australians and Papuans the Toalean culture are the characteristic stone arrowheads known interbred," says Cosimo Posth. as Maros points. The Toalean culture has only been found in a relatively small area on the southern peninsula of Sulawesi. "We

were able to assign the burial at Leang Panninge to that culture,' says Adam Brumm. "This is remarkable since it is the first largely complete and well preserved skeleton associated with the Toalean culture."

Selina Carlhoff, doctoral candidate at the Max Planck Institute for the Science of Human History and lead author of the study, isolated

A comparison with genomic data of hunter-gatherers who lived west of Wallacea at about the same time as the Leang Panninge

Stone arrowheads, known as Maros points, are up to 8,000 years old. They are considered typical of the Toalean techno-complex developed by the people living in the south of the island of Sulawesi. Credit: Yinika L Perston However, the Leang Panninge individual also carries a large proportion of its genome from an ancient Asian population. "That came as a surprise, because we do know of the spread of modern humans from eastern Asia into the Wallacea region—but that took place far later, around 3,500 years ago. That was long after this

 Initistrates above all just how little we know about the genetic the initial dose, the company reported in a statement. The d based on two small clinical trials conducted in the U.S. at More information: Genome of a middle Holocene hunter-gathere from Wallacea. Nature (2021). DOI: 10.1038/s41586-021-03823-6. https://bit.ly/3g.JHom1 Johnson & Johnson booster shot increases antibodies to coronavirus nine-fold, company says Will health officials recommend J&J recipients to receive a booster dose? By Yasemin Saplakagua A booster of see of Johnson & Johnson's COVID-19 vaccine prompted a big spike in antibodies among clinical trial participants when taken six to eight months after the first dose, the company announced on Wednesday (Aug.25). Health officials have recommended that people vaccinated with the Moderna or Pfizer-BioNTech vaccines receive a booster dose dose of the Johnson & Johnson vaccine, citing the lack of data. "We also anticipate booster shots will likely be needed for people who received the Johnson & Johnson (J&J) vaccine," the U.S. Bepartment of Health and Human services said in a statement on Aug.18. They added that they expect more data on the Johnson was in the statement of Market hat they expect more data on the Johnson was in a statement of a statement or the public informed with a timely plan for J&J booster shots or the next few weeks, and that they will "keep the public informed with a timely plan for J&J booster shots or the statement or a statement o	individual was alive," Johannes Krause reports. Furthermore, the research team has found no evidence that the group Leang Panninge belonged to left descendants among today's population in Wallacea. It remains unclear what happened to the Toalean culture and its people. "This new piece of the genetic puzzle from Leang Panninge	More than 14 million people in the U.S. received the single-dose Johnson & Johnson vaccine. Today's data, taken from clinical trial participants, suggests that a booster may be beneficial. A booster dose of the Johnson & Johnson vaccine generated a nine- fold increase in antibodies compared to the level seen 28 days after
 Will health officials recommend J&J recipients to receive a booster dose? By Yasemin Saplakoglu A booster dose of Johnson & Johnson's COVID-19 vaccine prompted a big spike in antibodies among clinical trial participants, when taken six to eight months after the first dose, the company announced on Wednesday (Aug.25). Health officials have recommended that people vaccinated with the Moderna or Pfizer-BioNTech vaccines receive a booster dose about eight months after their second dose, due to waning immunity, Live Science previously reported. But they have not yet recommended a booster for the Johnson & Johnson vaccine, citing the lack of data. "We also anticipate booster shots will likely be needed for people who received the Johnson & Johnson (J&J) vaccine," the U.S. Department of Health and Human services said in a statement on Aug.18. They added that they expect more data on the Johnson & Johnson vaccine, research at the studies were small, and didn't a real-world protection, the findings would likely support the of giving booster shots to those who received the Johnson & a onthe Johnson & Johnson vaccine, "It is pointing toward the utility of a second I think that's reasonable," Saad Omer, a vaccine researcher at told NPR. 	illustrates above all just how little we know about the genetic history of modern humans in southeast Asia," Posth says. <i>More information: Genome of a middle Holocene hunter-gatherer from Wallacea, Nature</i> (2021). <u>DOI: 10.1038/s41586-021-03823-6</u> , <u>www.nature.com/articles/s41586-021- 03823-6</u> <u>https://bit.ly/3gJHom1</u> Johnson & Johnson booster shot increases antibodies to	the initial dose, the company <u>reported in a statement</u> . The data is based on two small clinical trials conducted in the U.S. and in Europe, and the company submitted the results, which haven't yet been peer-reviewed, to the preprint database medRxiv. "We have established that a single shot of our COVID-19 vaccine generates strong and robust immune responses that are durable and persistent through eight months," Dr. Mathai Mammen, the Global
"keep the public informed with a timely plan for J&J booster shots as well."	coronavirus nine-fold, company says Will health officials recommend J&J recipients to receive a booster dose? By Yasemin Saplakoglu A booster dose of Johnson & Johnson's COVID-19 vaccine prompted a big spike in antibodies among clinical trial participants, when taken six to eight months after the first dose, the company announced on Wednesday (Aug.25). Health officials have recommended that people vaccinated with the Moderna or Pfizer-BioNTech vaccines receive a booster dose about eight months after their second dose, due to waning immunity, Live Science previously reported. But they have not yet recommended a booster for the Johnson & Johnson vaccine, citing the lack of data. "We also anticipate booster shots will likely be needed for people who received the Johnson & Johnson (J&J) vaccine," the U.S. Department of Health and Human services said in a statement on Aug.18. They added that they expect more data on the Johnson & Johnson booster shots in the next few weeks, and that they will	persistent through eight months," Dr. Mathai Mammen, the Global Head of Janssen Research & Development at Johnson & Johnson, said in the statement. "With these new data, we also see that a booster dose of the Johnson & Johnson COVID-19 vaccine further increases antibody responses among study participants who had previously received our vaccine." Mammen added that they will discuss potential strategies for booster doses with public health officials. But the study looked at antibody levels and not at real-world efficacy, so it's not clear if people who get the booster shot will be less likely to be infected or to develop severe disease than those who don't, <u>according to CNN</u> . Still, experts are reaching a consensus that antibody levels may be indicative of the amount of immune protection, according to CNN. Experts told NPR that while the studies were small, and didn't look at real-world protection, the findings would likely support the idea of giving booster shots to those who received the Johnson & Johnson vaccine. "It is pointing toward the utility of a second dose.
	Department of Health and Human services <u>said in a statement</u> on Aug.18. They added that they expect more data on the Johnson & Johnson booster shots in the next few weeks, and that they will "keep the public informed with a timely plan for J&J booster shots as well."	at real-world protection, the findings would likely support the id of giving booster shots to those who received the Johnson Johnson vaccine. "It is pointing toward the utility of a second do I think that's reasonable," Saad Omer, a vaccine researcher at Ya told NPR.

16

8/30/21

Name _____

Student number

A Big Step Forward in the Search for Alien Life: New **Class of Exoplanet Very Different to Our Own** Astronomers have identified a new class of habitable planets, dubbed 'Hycean' planets – hot, ocean-covered planets with

hydrogen-rich atmospheres

A new class of exoplanet very different to our own, but which could support life, has been identified by astronomers, which could greatly accelerate the search for life outside our Solar System.

In the search for life elsewhere, astronomers have mostly looked for planets of a similar size, mass, temperature, and atmospheric composition to Earth. However, astronomers from the University of Cambridge believe there are more promising possibilities out there. The researchers have identified a new class of habitable planets, dubbed 'Hycean' planets - hot, ocean-covered planets with hydrogen-rich atmospheres - which are more numerous and observable than Earth-like planets.

The researchers say the results, reported in The Astrophysical Journal, could mean that finding biosignatures of life outside our Solar System within the next two or three years is a real possibility. "Hycean planets open a whole new avenue in our search for life elsewhere," said Dr. Nikku Madhusudhan from Cambridge's 200 degrees Celsius, but their oceanic conditions could be similar Institute of Astronomy, who led the research.

are bigger and hotter than Earth, but still have the characteristics to host large oceans that could support microbial life similar to that found in some of Earth's most extreme aquatic environments.

These planets also allow for a far wider habitable zone, or 'Goldilocks zone', compared to Earth-like planets. This means that they could still support life even though they lie outside the range where a planet similar to Earth would need to be in order to be habitable.

Student number

Thousands of planets outside our Solar System have been discovered since the first exoplanet was identified nearly 30 years ago. The vast majority are planets between the sizes of Earth and Neptune and are often referred to as 'super-Earths' or 'mini-Neptunes': they can be predominantly rocky or ice giants with hydrogen-rich atmospheres, or something in between.

Most mini-Neptunes are over 1.6 times the size of Earth: smaller than Neptune but too big to have rocky interiors like Earth. Earlier studies of such planets have found that the pressure and temperature beneath their hydrogen-rich atmospheres would be too high to support life.

However, a recent study on the mini-Neptune K2-18b by Madhusudhan's team found that in certain conditions these planets could support life. The result led to a detailed investigation into the full range of planetary and stellar properties for which these conditions are possible, which known exoplanets may satisfy those conditions, and whether their biosignatures may be observable.

The investigation led the researchers to identify a new class of planets, Hycean planets, with massive planet-wide oceans beneath hydrogen-rich atmospheres. Hycean planets can be up to 2.6 times larger than Earth and have atmospheric temperatures up to nearly to those conducive for microbial life in Earth's oceans. Such Many of the prime Hycean candidates identified by the researchers planets also include tidally locked 'dark' Hycean worlds that may have habitable conditions only on their permanent night sides, and 'cold' Hycean worlds that receive little radiation from their stars.

> Planets of this size dominate the known exoplanet population, although they have not been studied in nearly as much detail as super-Earths. Hycean worlds are likely quite common, meaning that the most promising places to look for life elsewhere in the Galaxy may have been hiding in plain sight.

> However, size alone is not enough to confirm whether a planet is

18	8/30/21	Name		Student number
Hycean:	other aspects	such as mass, temperature, and atm	nospheric	Telescope (JWST), which is due to be launched later this year.
properties	s are required	for confirmation.		These planets all orbit red dwarf stars between 35-150 light-years
When try	ving to determ	nine what the conditions are like on	i a planet	away: close by astronomical standards. Planned JWST observations
many ligh	nt-years away,	, astronomers first need to determine	e whether	of the most promising candidate, K2-18b, could lead to the
the plane	t lies in the h	habitable zone of its star, and then	look for	detection of one or more biosignature molecules.
molecular	r signatures to	o infer the planet's atmospheric and	d internal	"A biosignature detection would transform our understanding of
structure,	which govern	n the surface conditions, presence of	of oceans	life in the universe," said Madhusudhan. "We need to be open
and poten	ntial for life.			about where we expect to find life and what form that life could
Astronom	ners also loc	ok for certain biosignatures which	ch could	take, as nature continues to surprise us in often unimaginable
indicate t	he possibility	of life. Most often, these are oxyge	n, ozone,	ways."
methane,	and nitrous of	oxide, which are all present on Ear	th. There	Reference: " <u>Habitability and Biosignatures of Hycean Worlds</u> " <u>25 August 2021, The</u>
are also a	number of ot	ther biomarkers, such as methyl chlo	oride and	https://nyti.ms/3Rh3niV
dimethyl	sulfide, that	are less abundant on Earth but	t can be	Heart Problem More Common After Covid-10 Than
promising	g indicators	of life on planets with hydro	ogen-rich	After Vessingtion Study Finds
atmosphe	eres where oxy	ygen or ozone may not be as abundar	nt.	After vaccination, Study Finds
"Essentia	lly, when we'	've been looking for these various n	nolecular	The research did not assess the risks specifically for young males,
signature	s, we have b	been focusing on planets similar	to Earth,	who are the most likely to develop the rare side effect.
which is	a reasonable	place to start," said Madhusudhan.	"But we	The Dfizer BioNTach Covid 10 vaccine is associated with an
think Hy	cean planets c	offer a better chance of finding seve	eral trace	increased risk of myocarditis an inflammation of the heart muscle
biosignat	ures."		_	a large new study from Israel confirms. But the side effect remains
"It's exc	iting that hab	vitable conditions could exist on p	lanets so	rare and Covid-19 is more likely to cause myocarditis than the
different	from Earth,'	" said co-author Anjali Piette, a	lso from	vaccine is scientists reported on Wednesday
Cambridg	ge.			The research which is based on the electronic health records of
Madhusu	dhan and his	team found that a number of trace t	terrestrial	about two million people who are 16 or older provides a
biomarke	rs expected to	be present in Hycean atmospheres	would be	comprehensive look at the real-wold incidence of various adverse
readily de	etectable with	spectroscopic observations in the ne	ear future	events after both vaccination and infection with the coronavirus
The larg	ger sizes, l	higher temperatures, and hydro	ogen-rich	Although the study did not break down the myocarditis risks by age
atmosphe	eres of Hycean	n planets make their atmospheric s	ignatures	or by sex, the median age of people who developed the condition
much mo	re detectable t	than Earth-like planets.		after vaccination was 25, and 19 of the 21 cases were in males, the
The Can	ibridge team	identified a sizeable sample of	potential	researchers reported.
Hycean v	worlds which a	are prime candidates for detailed st	Ludy With	In addition to myocarditis, the Pfizer vaccine was also associated
next-gene	eration telesc	copes, such as the James Web	o space	

with an increased risk of swollen lymph nodes, appendicitis and	vaccination myocarditis and pericarditis modeled by the F.D.A., the
shingles, although all three side effects remained uncommon in the	benefits of vaccination still outweighed the risks, the analysis said.
study. Coronavirus infection was not associated with these side	The study was one reason the F.D.A. said this week that after its
effects, but it did increase the odds of several potentially serious	licensure of Pfizer-BioNTech's vaccine, Pfizer would conduct
cardiovascular problems, including heart attacks and blood clots.	studies of myocarditis and pericarditis risks in people who received
"Coronavirus is very dangerous, and it's very dangerous to the	the shot, including long-term outcomes for those who fall ill after
human body in many ways," said Ben Reis, a co-author of the new	vaccination.
study and the director of the predictive medicine group at the	Israel's vaccination campaign, which relied on the Pfizer vaccine,
Boston Children's Hospital Computational Health Informatics	got off to a fast start; by May 24, nearly five million people, or
Program.	roughly 55 percent of the nation's population, had received both
He added, "If the reason that someone so far has been hesitating to	doses of the vaccine.
get the vaccine is fear of this very rare and usually not very serious	The new study, which was published in the New England Journal of
adverse event called myocarditis, well, this study shows that that	Medicine, is based on an analysis of the electronic health records of
very same adverse event is actually associated with a higher risk if	Clalit Health Services, the nation's largest H.M.O.
you're not vaccinated and you get infected."	The researchers assembled a group of roughly 880,000 people, age
The data arrived in the middle of an intense discussion among	16 or older, who had been vaccinated by May 24. To create a
federal regulators about the risks of myocarditis and pericarditis,	control group, they matched each of those individuals to an
which is inflammation of the lining around the heart, in younger	unvaccinated person who was medically and demographically
recipients of both the Pfizer-BioNTech and the Moderna vaccines,	similar. "You can think about them as pseudo twins," said Dr. Ran
concerns that very likely led the Food and Drug Administration to	Balicer, the chief innovation officer for Clalit Health Services and
negotiate larger pediatric trials with the vaccine makers this	the lead author of the new study.
summer in the hopes of adequately assessing the risks before a	Then the researchers calculated the incidence of 25 different
possible emergency authorization for younger children. The	potential adverse events in each group. In a second round of
companies are studying lower dosing in children to alleviate some	analysis, they calculated the incidence of the same potential side
of the risk.	effects in a group of 170,000 people who had tested positive for the
In their review of the Pfizer-BioNTech vaccine, regulators paid	coronavirus and in a similar group of uninfected controls.
close attention to an American health care claims database, which	They found that although myocarditis remained rare, it was more

19

8/30/21

Name

Student number

close attention to an American health care claims database, which found that the risk of the conditions in 16- and 17-year-old vaccinated boys could be as high as 1 in 5,000. The cases in the database were unconfirmed, the F.D.A. cautioned <u>in an analysis</u> <u>published this week</u>, but they were considered a reasonable estimate of the possible risk. Even in the worst-case scenarios of post20 8/30/21

condition for every 100,000 people who had been infected with the coronavirus, compared with those who had not.

The study provides critical context for understanding the risks and benefits of vaccination, said Dr. Brian Feingold, an expert on heart inflammation in children at the UPMC Children's Hospital of Pittsburgh who said he fields calls from parents who are concerned The ionic radius of actinium(III) may be far about the myocarditis risk. "And nobody's blowing that off, but I smaller and closer to the lanthanides than the think you just have to look at that in context," he said. "Those risks most recent measurements from the 1950s and related to Covid are higher than the risks related to the vaccine." In addition to myocarditis, coronavirus infection was also Lawrence Livermore National Laboratory, US associated with an increased risk of heart attacks, irregular heart has found. This could have potential beat, blood clots in the lungs or legs, kidney injury and bleeding ramifications for cancer therapies.

inside the skull. For every 100,000 infections, there were an extra 25 heart attacks and 62 cases of blood clots in the lungs, for instance.

"When you try to make your decision on whether or not you should take the vaccine, one of the things to ask is not only what are the potential adverse events associated with taking the vaccine, but also what am I risking when I think about Covid-19 as the other option," Dr. Balicer said.

Although the study is reassuring, it is important to continue collecting data on the myocarditis risks in young males in particular. scientists said.

"But we're at this red hot moment," said Dr. Sean O'Leary, a pediatric infectious disease expert at the University of Colorado Anschutz Medical Campus. "This is what we've got, and the benefits still consistently appear to greatly outweigh the risks."

In one recent study, which has not yet been published in a peer reviewed journal, researchers calculated that 12- to 17-year-old boys were about six times as likely to develop myocarditis after infection with the virus than after receiving one of the mRNA vaccines.

Student number https://bit.ly/3zs9n13

Actinium's ionic radius revised after decades Chemistry of one of Earth's rarest elements remains mysterious,

though not for lack of trying **By Kit Chapman**

70s suggest, a review by researchers at

Actinium-225 glows blue because the alpha particles it emits ionise the surrounding air Source: © Oak Ridge National Laboratory

Actinium was discovered by French chemist André-Louis Debierne in 1899. But it exists in such small quantities naturally – usually from the radioactive decay of heavier elements - that it can't be extracted and used in experiments. Instead, researchers rely on actinium created in nuclear reactors. Even so, the element is often in short supply, with only microgram quantities available to a handful of teams around the world.

This means experimentalists have to be selective in the research they perform, often relying on data from earlier work. This is why much of the element's chemistry remains a mystery. Now, a group led by Gauthier Deblonde at Livermore's Seaborg Institute has taken a forensic approach to previous data, predominantly crystallography during the 1950s and 1970s, comparing it with more recent x-ray absorption experiments.

The results suggest the ionic radius has been overestimated by 0.06Å, a significant distance for an actinide. This, Deblonde and colleagues conclude, is likely due to the complexity of working with of actinium - which has few spectroscopic features, is 21 8/30/21

Name

Student number

colourless, not fluorescent and diamagnetic, as well as incredibly that we will learn much about this elusive element'. short-lived – and the probable contamination of the sample with References G J-P Deblonde, M Zavarin and A B Kersting, Coord. Chem. Rev., 2021, 446, 214130 (DOI: 10.1016/j.ccr.2021.214130) traces of radium.

The review is particularly important given actinium-225's increasing promise as an anti-cancer therapy. Complexes of actinium with a chelating dodecane tetraacetic acid ligand (Dota) are being investigated in several types of cancer. 'This correction very nicely explains why the actinium cation fits into the cavity of Dota ligand, for which it is supposed to be too large,' says Ekaterina Dadachova, a pharmacy researcher at the University of Saskatchewan, Canada, who specialises in radiotherapies. 'It also helps to explain why actinium was 'slipping out' of the grip of many macrocyclic ligands specifically designed for it.'

While actinium-225 is considered an important potential therapy it's not the only actinium isotope that's found a use; actinium-227 is essential as a precursor to radium-223, a chemotherapy agent approved in more than 50 countries. In 2018, the US Department of Energy entered into a 10-year commercial agreement with Bayer to supply the pharma giant with the isotope from its reactor facility at Oak Ridge National Laboratory.

'This article demonstrates cross-pollination of ideas between radiopharmaceutical chemistry and classical inorganic chemistry with radiotherapeutic work renewing the interest in inorganic chemistry of actinium,' Dadachova adds. 'The information emanating from the inorganic chemistry field will help to design better chelating agents and better therapies.'

Justin Wilson, who studies radioactive metal complexes in medicine at Cornell University, US, agrees. 'The revised ionic radius put forth in this study will be of significant value to the research community, especially in light of the very promising therapeutic properties of actinium-225.' With the modern spectroscopic equipment now available, Wilson adds, 'it is likely influence release of insulin from beta cells.

https://bit.ly/2Y8Ut1V

How Migraines Protect Against Type 2 Diabetes People who get migraines are less likely to develop type 2 diabetes, while some people who develop diabetes become less prone to migraines.

Today, scientists studying the link between these conditions report how the peptides that cause migraine pain can influence production of insulin in mice, possibly by regulating the amount of secreted insulin or by increasing the number of pancreatic cells that produce it. These findings could improve methods to prevent or treat diabetes.

The researchers will present their results at the fall meeting of the American Chemical Society (ACS). ACS Fall 2021 is a hybrid meeting being held virtually and in-person August 22-26, and ondemand content will be available August 30-September 30. The meeting features more than 7,000 presentations on a wide range of science topics.

The link between the two diseases isn't obvious: "Migraines happen in the brain, while diabetes is associated with the pancreas, and these organs are far from each other," says Thanh Do, Ph.D., the project's principal investigator. His group became interested in the subject after a number of papers described an inverse relationship between the conditions.

Researchers already knew that two peptides in the nervous system - calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) — play a major role in causing the pain of migraines. These same peptides, along with the related peptide amylin, are also found in the pancreas. There, they Insulin regulates blood sugar levels by helping other cells in the diabetes. That's confusing since PACAP has been shown to body absorb glucose and either store it or use it for energy. In type stimulate insulin release, which leads to insulin resistance, Do says. 2 diabetes, those other cells become resistant to insulin and less His team is now trying to resolve this conundrum. The group's capable of absorbing glucose, leading to high blood sugar levels. initial findings show that PACAP's actions could depend on The beta cells initially compensate by ramping up insulin glucose levels. The team has found preliminary evidence that production but eventually wear themselves out and die, PACAP regulates insulin in a glucose-dependent manner and exacerbating the issue.

offer targets for therapies that could treat either of these conditions. existing cells. They are developing analytical methods to test this. Migraine drugs that interfere with CGRP and its cellular receptors "Despite these positive results, you can't inject CGRP and PACAP recently went on the market, and other treatments are being studied. into the body as therapeutic strategies for diabetes because these Yet, more research is needed to clarify the peptides' effects. Do is peptides cause migraine pain," Do says. "But once we understand trying to clear up contradictory findings about their impact on how they exert their effects on insulin secretion, we can design insulin.

To probe the peptides' activity in mice, Do's University of pain receptor."

Tennessee group devised a method to glean data from just a few Because CGRP and PACAP can seemingly protect against diabetes, hundred beta cells. They recently reported that this technique Do and others worry that the anti-CGRP and anti-PACAP showed that CGRP lowered levels of mouse insulin 2, the analog of treatments under development or already on the market for human insulin. This may counter the insulin resistance that migraine could have the unintended consequence of increasing the develops in type 2 diabetes, Do says. But CGRP was less effective risk of diabetes. In addition, these peptides are involved in at regulating mouse insulin 1, which agrees with early studies numerous other beneficial functions in the body, such as blood showing that mice with only insulin 1 are prone to developing vessel dilation. So Do and other scientists are also exploring the diabetes. potential risks of altering the peptides' activity.

The disease is also associated with aggregation of amylin, says Aleksandra Antevska, a graduate student in Do's lab who is presenting the work at the meeting. These aggregates may contribute to the beta cell damage that helps cause type 2 diabetes, Do notes. Because amylin and insulin are co-secreted by beta cells, using CGRP to limit insulin production could also limit amylin production, he says. That could protect the cells and help normalize their function.

promotes beta cell proliferation, rather than prodding existing beta Because of their role in migraine and diabetes, CGRP and PACAP cells to work harder — thus avoiding the risk of wearing out the

peptide analogs that would control insulin but would not bind to the

Recorded media briefing on this topic 25:35 The researchers acknowledge support and funding from the University of Tennessee.

https://bit.ly/3sZHGKG

"Inescapable" COVID-19 Antibody Discovery – **Neutralizes All Known SARS-CoV-2 Strains**

An antibody therapy that appears to neutralize all known SARS-CoV-2 strains, and other coronaviruses, was developed with a little help from structural biologist Jay Nix.

PACAP, too, is thought to play a protective role against type 2 Lifesaving COVID-19 vaccines are allowing us to feel optimistic

23 8/30/21 Name	Student number
again, after more than a year of anxiety and tragedy. But vaccines	But the team didn't stop there.
are only one side of the coin - we also need treatments that car	Understanding that new mutations could arise and that a novel
prevent severe disease after someone has been infected. In the past	pathogenic coronavirus could emerge from an animal-human
year, there has been significant progress in developing effective	crossover event, the scientists began a follow-up study to deeply
antibody-based therapies, and three drugs are currently available	explore what factors make antibodies resistant to viral escape and
through emergency use authorization (EUA) by the Food and Drug	how certain antibodies are also broadly reactive against diverse,
Administration.	related viruses. Using biochemical and structural analysis, deep
Sotrovimab, the newest antibody therapy, was developed by	mutational scanning, and binding experiments, they identified one
GlaxoSmithKline and Vir Biotechnology after a large collaborative	antibody with unparalleled universal potency.
study by scientists from across the nation discovered a natural	"This antibody, which binds to a previously unknown site on the
antibody (in the blood of a SARS survivor, back in 2003) that has	coronavirus spike protein, appears to neutralize all known
remarkable breadth and efficacy.	sarbecoviruses – the genus of coronaviruses that cause respiratory
Experiments showed that this antibody, called S309, neutralizes all	infections in mammals," said Nix, who is an affiliate in Berkeley
known SARS-CoV-2 strains - including newly emerged mutants	Lab's Biosciences Area. "And, due to the unique binding site on
that can now "escape" from previous antibody therapies – as well as	mutation-resistant part of the virus, it may well be more difficult for
the closely related original SARS-CoV virus.	a new strain to escape."
Jay Nix, leader of the Molecular Biology Consortium based at	Subsequent tests in hamsters suggest that this antibody could even
Berkeley Lab's Advanced Light Source (ALS), used beamlines at	prevent a COVID-19 infection if given prophylactically. The new
the ALS and beamlines at SLAC's Stanford Synchrotron Radiation	work was published in <i>Nature</i> .
Lightsource to perform X-ray crystallography on samples of	Reference: "SARS-CoV-2 RBD antibodies that maximize breadth and resistance to ascane" by Tyler N. Starr, Nading Crudnochowski, Thuoming Liu, Eabrizia Zatta, Young
survivor-derived antibodies during an early phase of the study.	Jun Park, Amin Addetia, Dora Pinto, Martina Beltramello, Patrick Hernandez, Allison J.
His work, alongside other crystallography and cryo-electror	Greaney, Roberta Marzi, William G. Glass, Ivy Zhang, Adam S. Dingens, John E. Bowen,
microscopy findings, helped generate detailed structural maps of	M. Alejandra Tortorici, Alexandra C. Walls, Jason A. Wojcechowskyj, Anna De Marco,
how these antibodies bind to the SARS-CoV-2 spike protein	Tucker, Jessica Bassi, Chiara Silacci-Fregni, Michael P. Housley, Julia di Iulio, Gloria
allowing the wider team to select the most promising contenders	Lombardo, Maria Agostini, Nicole Sprugasci, Katja Culap, Stefano Jaconi, Marcel Meury,
and advance them to cell culture- and animal-based studies	Exequiel Dellota, Rana Abdelnabi, Shi-Yan Caroline Foo, Elisabetta Cameroni, Spencer
Following exciting lab results, the developers designed sotrovimat	Benigni, Johan Neyts, Amalio Telenti, Florian A. Lempp, Matteo S. Pizzuto, John D.
based on the structure of S309, and evaluated it in clinical trials.	Chodera, Christy M. Hebner, Herbert W. Virgin, Sean P. J. Whelan, David Veesler,
The FDA granted an EUA for sotrovimab in late May after trials	Davide Corti, Jesse D. Bloom and Gyorgy Snell, 14 July 2021, Nature.
showed that people with mild to moderate COVID-19 infections	The Advanced Light Source and SLAC's Stanford Synchrotron Radiation Lightsource are
who received an infusion of the therapy had an 85% reduction in	Department of Energy Office of Science User Facilities.
rates of hospitalization or death, compared with placebo.	

24	8/30/21	Name	Student number
		<u>https://wb.md/3zGJkn3</u>	to SARS-CoV-2 infection in children than in adults.
Ch	ildren's Up	per Airways Primed to Combat SARS-	Children were also more likely than adults to have distinct immune
		CoV-2 Infection	cell subpopulations, including <i>KLRC1</i> + cytotoxic T cells, involved
Upp	er airways of	children are pre-activated and primed to detect	in fighting infection, and memory CD8+ T cells, associated with the
SAR	S-CoV-2 infe	ction: may contribute to stronger early immune	development of long-lasting immunity.
	0	responses	"Clear Evidence"
		Megan Brooks	The study provides "clear evidence" that upper airway immune
Epith	elial and imn	nune cells of the upper airways of children are	cells of children are "primed for virus sensing, resulting in a
pre-a	ctivated and j	primed to detect SARS-CoV-2 infection, which	stronger early innate antiviral response to SARS-CoV-2 infection
may	contribute to	stronger early immune responses to SARS-CoV	than in adults," the investigators say.
2 infe	ection than adu	ults, new research suggests.	Primed virus sensing and a pre-activated innate immune response in
The f	indings may h	help to explain why children have a lower risk of	children leads to efficient early production of interferons (IFNs) in
devel	oping severe	COVID-19 illness or becoming infected with	the infected airways, likely mediating substantial antiviral effects,
SAR	S-CoV-2 in th	e first place, the researchers say.	they note.
The s	study was <u>pub</u>	lished online August 18 in Nature Biotechnology	Ultimately, this may lead to lower viral replication and faster
Prim	ed for Action	1	clearance in children. In fact, several studies have already shown
Child	lren appear to	be better able than adults to control SARS-CoV-	that children eliminate the virus quicker than adults, consistent with
2 inf	ection, but, u	ntil now, the exact molecular mechanisms have	the concept that they shut down viral replication earlier, the study
been	unclear.		team says.
A tea	m of investig	ators from Germany did an in-depth analysis of	Weighing in on the findings for <i>Medscape Medical News</i> , John
nasal	swab sample	es obtained from 24 children and 21 adults who	Wherry, PhD, director of the Institute for Immunology at the
testec	l positive for	SARS-CoV-2, as well as a control group of 18	University of Pennsylvania, Philadelphia, said this "interesting
child	ren and 23 adu	ults who tested negative for SARS-CoV-2.	study highlights potential differences in innate immunity and
"We	wanted to un	derstand why viral defense appears to work so	possibly geographic immunity in the upper respiratory tract in
much	better in chil	ldren than in adults," Irina Lehmann, PhD, head	children versus adults."
of the	e molecular ep	pidemiology unit at the Berlin Institute of Health	"We know there are differences in innate immunity over a lifespan
Chari	té – Universit	ätsmedizin Berlin, explained in <u>a news release</u> .	but exactly how these differences might relate to viral infection
Singl	e-cell sequen	cing showed that children had higher baseline	remains unclear," said Wherry, who was not involved in the study.
levels	s of certain R	NA-sensing receptors that are relevant to SARS	Children, of course, often have more respiratory infections than
CoV-	2 detection, s	such as MDA5 and RIG-I, in the epithelial and	adults (but) whether this is due to exposure (ie, daycare, schools,
1mmu	ine cells of the	eir noses.	rector susceptionity (lack of accumulated adaptive immunity over a
This	differential ex	spression led to stronger early immune responses	greater number of years of exposure) is unclear, wherry noted.

Student number

"These data may help reveal what kinds of innate immune curbing this invasive species and returning ash trees to North responses in the upper respiratory tract might help restrain SARS-American forests.

milder COVID-19 disease," he added.

The study was supported by the Berlin Institute of Health COVID-19 research program and fightCOVID@DKFZ initiative, European Commission, German Federal Ministry for Education and Research (BMBF), and German Research Foundation. Lehmann and Wherry have reported no relevant financial relationships. Nat Biotechnol. Published online August 18, 2021. Full text

https://bit.lv/3kA4fSd

The invasive emerald ash borer has destroyed millions of trees – scientists aim to control it with tiny parasitic wasps

Few people ever actually see the insect itself – just the trail of destruction it leaves behind Kristine Gravson^{*}

The emerald ash borer (Agrilus planipennis) is a deceptively attractive metallic-green adult beetle with a red abdomen. But few people ever actually see the insect itself – just the trail of destruction it leaves behind under the bark of ash trees.

Adult emerald ash borer beetles are about 0.5 inches long. PA DEC, CC BY particularly popular for residential developments, representing 20-These insects, which are native to Asia and Russia, were first 40% of planted trees in some Midwestern communities. Emerald discovered in Michigan in 2002. Since then they have spread to 35 states and become the most destructive and costly invasive wood-estimated replacement cost of US\$10-25 billion. boring insect in U.S. history. They have also been detected in the Ash wood is also popular for lumber used in furniture, sports and Nova Scotia.

In 2021 the U.S. Department of Agriculture stopped regulating the over \$25 billion.

movement of ash trees and wood products in infested areas because Why quarantines have failed

the beetles spread rapidly despite quarantine efforts. Now federal State and federal agencies have used quarantines to combat the regulators and researchers are pursuing a different strategy: spread of several invasive forest insects, including Asian biological control. Scientists think that tiny parasitic wasps, which longhorned beetles and Lymantria dispar, previously known as prey on emerald ash borers in their native range, hold the key to gypsy moth. This approach seeks to reduce the movement of eggs

CoV-2 and (perhaps partially) explain why children typically have I study invasive forest insects and work with the USDA to develop easier ways of raising emerald ash borers and other invasive insects in research laboratories. This work is critical for discovering and testing ways to better manage forest recovery and prevent future outbreaks. But while the emerald ash borer has spread uncontrollably in nature, producing a consistent laboratory supply of these insects is surprisingly challenging - and developing an effective biological control program requires a lot of target insects.

Researchers believe the emerald ash borer likely arrived in the U.S. on imported wood packaging material from Asia sometime in the 1990s. The insects lay eggs in the bark crevices of ash trees; when larva hatch, they tunnel through the bark and feed on the inner layer of the tree. Their impact becomes apparent when the bark is peeled back, revealing dramatic feeding tracks. These channels damage the trees' vascular tissue - internal networks that transport water and nutrients – and ultimately kill the tree.

Before this invasive pest appeared on the scene, ash trees were ash borers have killed tens of millions of U.S. trees with an

Canadian provinces of Ontario, Quebec, Manitoba, New Brunswick equipment and paper, among many other products. The ash timber industry produces over 100 million board feet annually, valued at

25

and young insects hidden in lumber, nursery plants and other wood The selected wasps are tiny and don't products. In counties where an invasive species is detected, sting, but their egg-laying organs can regulations typically require wood products to be heat-treated, penetrate ash tree bark. And they stripped of bark, fumigated or chipped before they can be moved. The federal emerald ash borer quarantine started with 13 counties in find emerald ash borer larva or eggs Michigan in 2003 and increased exponentially over time to cover to serve as their hosts.

than a quarter of the continental U.S. Quarantines can be effective when forest insect pests mainly spread through movement of their eggs, hitchhiking long distances when humans transport wood.

Name

However, female emerald ash borers can fly up to 12 miles per day for as long as six weeks after mating. The beetles also are difficult to trap, and typically are not detected until they have been present for three to five years – too late for quarantines to work.

Next option: Wasps

Any biocontrol plan poses concerns about unintended consequences One notorious example is the introduction of cane toads in Australia in the 1930s to reduce beetles on sugarcane farms. The toads didn't eat the beetles, but they spread rapidly and ate lots of other species. And their toxins killed predators.

Introducing species for biocontrol is strictly regulated in the U.S. It can take two to 10 years to demonstrate the effectiveness of potential biocontrol agents, and obtaining a permit for field testing can take two more years. Scientists must demonstrate that the released species specializes on the target pest and has minimal impacts on other species.

Four wasp species from China and Russia that are natural enemies of the emerald ash borer have gone through the approval process for field release. These wasps are parasitoids: They deposit their eggs or larva into or on another insect, which becomes an unsuspecting food source for the growing parasite. Parasitoids are great candidates for biocontrol because they typically exploit a single host species.

have specialized sensory abilities to

Student number

An emerald ash borer larva in wood (left); Tetrastichus planipennisi, a parasitic wasp that preys on ash borers; and wasp larva that have grown and eaten the ash borer. USDA, CC BY-ND

The USDA is working to rear massive numbers of parasitoid wasps in lab facilities by providing lab-grown emerald ash borers as hosts for their eggs. Despite COVID-19 disruptions, the agency produced over 550,000 parasitoids in 2020 and released them at over 240 sites.

The goal is to create self-sustaining field populations of parasitoids that reduce emerald ash borer populations in nature enough to allow replanted ash trees to grow and thrive. Several studies have shown encouraging early results, but securing a future for ash trees will require more time and research.

One hurdle is that emerald ash borers grown in the lab need fresh ash logs and leaves to complete their life cycle. I'm part of a team working to develop an alternative to the time- and cost-intensive process of collecting logs: an artificial diet that the beetle larva can eat in the lab.

The food must provide the right texture and nutrition. Other leaffeeding insects readily eat artificial diets made from wheat germ, but species whose larva digest wood are pickier. In the wild, emerald ash borers only feed on species of ash tree.

In today's global economy, with people and products moving rapidly around the world, it can be hard to find effective management options when invasive species become established over a large area. But lessons learned from the emerald ash borer

27 8/30/21	Name		Student number
will help researchers m	obilize quickly	when the next forest pest	mitochondria — the powerhouses of the cell. Mitochondria are
arrives.			cellular structures that generate energy in the form of a molecule
*Associate Professor of Biology, University of Richmond			called ATP. Because healthy cells need ATP to function,
Disclosure statement Kristine Gravson receives cooperative agreement funding from the USDA Animal and			mitochondrial dysfunction is harmful to cell survival and the
Plant Health Inspection Service (APHIS) program for Plant Protection and Quarantine			primary cause of brain cell death in Alzheimer's disease.
(PPQ).			The researchers, therefore, hypothesized that gelatins prevent
Partners University of Richmond provides	s funding as a member	of The Conversation US View all	amyloid-beta-induced cell death through mitochondrial protection.
partners	s junaing as a member	of the Conversation 03. <u>view un</u>	Indeed, the gelatin-treated mitochondria showed reduced structural
hi hi	ttps://bit.ly/3Blm	<i>u4E</i>	damage, improved ATP production, and lower oxidative stress.
Gelatins may protect the brain against Alzheimer's			Furthermore, they believe gelatins exert these protective effects by
disease			blocking excessive calcium from entering the cell, which can
A traditional Chinese medicine successfully protected neurons			trigger mitochondrial damage, oxidative stress, and ultimately cell
from amyloid-induced death			death.
JIOM	Kareem Clark	u ucum	Of course, while these results are exciting, the human brain is a
Grandma might have th	e right idea whe	en bringing Jell-O salad to	little more complex than a dish of cells, and more work is necessary
every church potluck.			to determine the therapeutic potential of gelatins in human disease.
Gelating are animal-derived protein fragments created by breaking			https://bit.ly/38nWCZt
down collagen — a protein found in connective tissues like skin			Why Do Short Lung Infections Lead to Long-Lasting
and ligaments.			Lung Damage?
Gelatins are also widely	y used medicina	lly, from skincare to joint	Study points to mechanism of post-viral lung damage: suggests
pain. But traditional Chi	inese medicine a	lso claims that they protect	targets of intervention.
the brain against deterior	rating diseases su	uch as Alzheimer's disease.	The deadliest time in a viral respiratory illness sometimes is
And a recent study publ	ished in Frontier	s in Pharmacology put this	actually after the virus is cleared from the body. Destructive
historically anecdotal ren	medy to the test.		processes that are set in motion during an infection crest in the
Researchers first mimicked Alzheimer's disease in a dish by			weeks after the virus is defeated, leading to organ damage that can
treating lab-grown cells with a toxic protein fragment that			cause chronic illness or even death. After an initial bout of COVID-
accumulates in patient brain cells, called amyloid-beta. And like			19. for example, some people struggle with persistent cough.
human Alzheimer's disease, amyloid-beta treatment induced			difficulty breathing and shortness of breath — signs of ongoing
profound cell death in this model. But, surprisingly, gelatin			lung disease.
treatment completely protected these brain-like cells from this			Researchers at Washington University School of Medicine in St.
toxicity.			Louis have found clues to just how lung damage develops in the
To understand how ge	latins are neuro	protective, they turned to	aftermath of a respiratory infection. Studying mice, they found that

Name

Student number

infection triggers the expression of a protein called IL-33, which is needed for stem cells in the lung to overgrow into air spaces, and increases mucus production and inflammation in the lung. The findings, published on August 24, 2021, in the *Journal of Clinical Investigation*, reveal potential points of intervention to prevent chronic lung damage caused by viral infections.

"Vaccines, antivirals, antibody therapies are all helpful, but they are not a solution for people who are already on the road to progressive disease," said senior author Michael J. Holtzman, MD, the Selma and Herman Seldin Professor of Medicine and a professor of cell biology & physiology. "We've gotten better at taking care of the acute illness due to COVID-19, but what happens after that initial injury phase is still a major obstacle to a better outcome. At this

point, we are also faced with tens of millions of people who already had infection, and a high percentage of them are having long-term disease, especially with respiratory symptoms. We don't have a treatment that can correct the problem." repair damaged barriers. During and after infection, though, IL-33 and a high percentage of them are having long-term to assess the role of IL-33 in post-viral lung damage, the researchers genetically modified mice to lack IL-33 in the basal set

treatment that can correct the problem." researchers genetically modified mice to lack IL-33 in the basal set It's long been recognized that acute respiratory infections can lead to chronic lung disease. Children hospitalized with respiratory syncytial virus, for example, are two to four times more likely to develop asthma that persists for long periods, maybe even for a lifetime. How exactly an acute respiratory infection triggers chronic disease, however, is not fully understood, making it difficult to develop therapies to prevent or treat it.

As part of this study, Holtzman and colleagues, including first without IL-33 in basal cells also had higher oxygen levels in their author Kangyun Wu, PhD, an instructor in medicine, studied mice blood and less airway hyperresponsiveness, both of which are signs infected with Sendai virus. Sendai doesn't cause serious disease in of improvement in their chronic lung disease.

people, but it naturally infects other animals including mice and "These results were really nice to see because getting rid of IL-33 and in turn losing basal stem cells could have made things worse," infections in people.

The researchers examined lung tissues from mice 12 and 21 days were no longer able to perform the normal repair of the viral after infection with Sendai virus, and compared the samples to lung damage to the lung barrier. But that's not the case. The mice

Name

Student number

lacking this population of basal cells instead had much better first 3D reconstruction of a Devonian plant based exclusively on outcomes. That's what we're excited about. These findings put us fossil evidence. The findings demonstrate that the appearance of on firm ground to find therapies that correct the bad behavior of different axis types at branching points resulted in the evolution basal stem cells." complexity soon after land plants evolved sometime before 400

Targeting steps on the pathway between IL-33 and basal cell million years ago. The results are published in *eLife*. activation could form the basis of broadly effective therapies to New research demonstrates how the oldest prevent or treat lung disease caused by a variety of viruses and known root axed developed more than 400 perhaps other forms of injury in the lung and other sites where the million years ago. The evolution of roots body meets the outside world, Holtzman said. at this time was a dramatic event that

"The lung has a pretty stereotyped response to injury, including impacted our planet and atmosphere and viral injury," Holtzman said. "The specific type of virus, the resulted in transformative ecological and genetics of the host, the severity of the initial illness — all of these climate change.

things influence the outcome, but they're just matters of degrees. You still see the same key elements across conditions, and that's why we believe that there can be a common strategy for treatment. We have a drug discovery program to find such a common strategy. and this study fits well with that."

Reference: "Basal-epithelial stem cells cross an alarmin checkpoint for post-viral lung disease" by Kangyun Wu, Kenji Kamimoto, Yong Zhang, Kuangying Yang, Shamus P. Keeler, Benjamin J. Gerovac, Eugene V. Agapov, Stephen P. Austin, Jennifer Yantis, Kelly A. Gissy, Derek E. Byers, Jennifer Alexander-Brett, Christy M. Hoffmann, Matthew Wallace, Michael E. Hughes, Erika C. Crouch, Samantha A. Morris and Michael J. Holtzman, 24 August 2021, Journal of Clinical Investigation. DOI: 10.1172/JCI149336

Funding: NIH/National Heart, Lung and Blood Institute, NIH/National Institute of Allergy and Infectious Diseases, Bebermeyer Fund, Hardy Trust, Schaefer Fund

https://bit.ly/3BpfZ0M **400-Million-Year-Old Fossils Reveal How the First Roots Evolved**

A plant fossil from a geological formation in Scotland sheds light on the development of the earliest known form of roots.

A team led by researchers at GMI – the Gregor Mendel Institute of Molecular Plant Biology of the Austrian Academy of Sciences, the University of Edinburgh, and the University of Oxford realize the

Artist's reconstruction of what Asteroxylon mackiei would have looked like in life. Each leafy shoot is roughly 1 cm in diameter. Credit: Matt Humpage The first evidence-based 3D reconstruction of the fossil Asteroxylon mackiei, the most structurally complex plant from the Rhynie chert has shown how roots and other types of axes developed in this ancient plant. The fossil is preserved in chert (a type of flint) found near village of Rhynie in Aberdeenshire, Scotland. The specimens are exceptionally well-preserved in the 407-million-year-old rocks from the Early Devonian period.

The extinct genus Asteroxylon belongs to the group of plants called the lycophytes, a class that also comprises living representatives such as isoetes and selaginella. The reconstruction has allowed researchers, for the first time, to glean both anatomical and developmental information of this mysterious fossil. This is of particular significance because previous interpretations of the structure of this fossil plant were based to a large extent on comparisons of fragmentary images with extant plants.

The reconstruction demonstrates that these plants developed roots in an entirely different way than extant plants develop roots today. The rooting axes of A. mackiei are the earliest known types of plant mechanism of branching, called "dichotomous branching," is was brilliant to finally see details that had previously been hidden." known in living plants within tissues that share structural identity. Reference: "An evidence-based 3D reconstruction of Asteroxylon mackiei, the most However, as Dolan stresses: "No roots develop in this way in living plants, demonstrating that this mechanism of root formation is now

extinct." Their findings demonstrate how a now extinct rooting system developed during the evolution of the first complex land plant.

"100 Years after the discovery of the fossils in Rhynie, our reconstruction demonstrates what these enigmatic plants really looked like! The reconstruction also demonstrates how the roots formed" exclaims GMI group leader Liam Dolan, co-corresponding Brain-computer interfaces (BCIs) are emerging assistive devices author on the work. Understanding the structure and evolution of these plants from the Early Devonian period provides us with an insight into events at a key time in Earth history just after plants colonized the dry surfaces of the continents as they began to spread - radiate - across the land.

"Their evolution, radiation, and spread across all continents had a dramatic impact on the Earth system. Plant roots reduced atmospheric CO_2 levels, stabilized the soil and revolutionized water circulation across the surfaces of continents," states first author and co-corresponding author Alexander (Sandy) J. Hetherington, group Most current BCI systems use one or two sensors to sample up to a leader at the University of Edinburgh. At the root of the few hundred neurons, but neuroscientists are interested in systems environmental and ecological impact of plant evolution are the that are able to gather data from much larger groups of brain cells. plant roots themselves!

to so many of the key questions of evolution are lying in shelves in "These are the oldest known structures that resemble modern roots these institutions" said the scientist who is now based at the and now we know how they formed. They developed when a shoot- University of Edinburgh. "Using digital 3D techniques it is possible like axis formed a fork where one prong maintained its shoot for the first time to visualize the complex body plan of A. mackiei identity and the second developed root identity," says Dolan. This allowing us to discover how these enigmatic plants developed. It complex plant preserved from the Rhynie chert" by Alexander J Hetherington, Siobhán L Bridson, Anna Lee Jones, Hagen Hass, Hans Kerp and Liam Dolan, 24 August 2021, eLife. DOI: 10.7554/eLife.69447

https://bit.ly/3tajOMp

Wireless Microscale Neural Sensors Enable Next-**Generation Brain-Computer Interface System**

Coordinated network of independent, wireless microscale neural sensors, each about the size of a grain of salt, to record and stimulate brain activity

that may one day help people with brain or spinal injuries to move or communicate. BCI systems depend on implantable sensors that record electrical signals in the brain and use those signals to drive external devices like computers or robotic prosthetics.

Student number

Tiny chips called neurograins are able to sense electrical activity in the brain and transmit that data wirelessly. Credit: Jihun Lee / Brown University

Now, a team of researchers has taken a key step toward a new Hetherington highlighted how his research was enabled by fossils concept for a future BCI system — one that employs a coordinated that were collected by generations of paleontologists that are network of independent, wireless microscale neural sensors, each housed in many different museums and universities. "The answers about the size of a grain of salt, to record and stimulate brain activity. The sensors, dubbed "neurograins," independently record attaches to the scalp outside the skull. It works like a miniature the electrical pulses made by firing neurons and send the signals cellular phone tower, employing a network protocol to coordinate wirelessly to a central hub, which coordinates and processes the the signals from the neurograins, each of which has its own network address. The patch also supplies power wirelessly to the signals.

In a study published on August 12, 2021, in *Nature Electronics*, the neurograins, which are designed to operate using a minimal amount research team demonstrated the use of nearly 50 such autonomous of electricity. "This work was a true multidisciplinary challenge," said Jihun Lee,

neurograins to record neural activity in a rodent.

The results, the researchers say, are a step toward a system that a postdoctoral researcher at Brown and the study's lead author. "We could one day enable the recording of brain signals in had to bring together expertise in electromagnetics, radio frequency unprecedented detail, leading to new insights into how the brain communication, circuit design, fabrication and neuroscience to works and new therapies for people with brain or spinal injuries. design and operate the neurograin system."

"One of the big challenges in the field of brain-computer interfaces The goal of this new study was to demonstrate that the system is engineering ways of probing as many points in the brain as could record neural signals from a living brain — in this case, the possible," said Arto Nurmikko, a professor in Brown's School of brain of a rodent. The team placed 48 neurograins on the animal's Engineering and the study's senior author. "Up to now, most BCIs cerebral cortex, the outer layer of the brain, and successfully have been monolithic devices — a bit like little beds of needles. recorded characteristic neural signals associated with spontaneous Our team's idea was to break up that monolith into tiny sensors that brain activity.

could be distributed across the cerebral cortex. That's what we've The team also tested the devices' ability to stimulate the brain as been able to demonstrate here." well as record from it. Stimulation is done with tiny electrical

The team, which includes experts from Brown, Baylor University, pulses that can activate neural activity. The stimulation is driven by University of California at San Diego and Qualcomm, began the the same hub that coordinates neural recording and could one day work of developing the system about four years ago. The challenge restore brain function lost to illness or injury, researchers hope.

was two-fold, said Nurmikko, who is affiliated with Brown's The size of the animal's brain limited the team to 48 neurograins Carney Institute for Brain Science. The first part required shrinking for this study, but the data suggest that the current configuration of the complex electronics involved in detecting, amplifying and the system could support up to 770. Ultimately, the team envisions transmitting neural signals into the tiny silicon neurograin chips. scaling up to many thousands of neurograins, which would provide The team first designed and simulated the electronics on a computer, a currently unattainable picture of brain activity.

and went through several fabrication iterations to develop "It was a challenging endeavor, as the system demands" operational chips. simultaneous wireless power transfer and networking at the mega-

The second challenge was developing the body-external bit-per-second rate, and this has to be accomplished under communications hub that receives signals from those tiny chips. extremely tight silicon area and power constraints," said Vincent The device is a thin patch, about the size of a thumb print, that Leung, an associate professor in the Department of Electrical and

32 8/30/21

Computer Engineering at Baylor. "Our team pushed the envelope for distributed neural implants."

There's much more work to be done to make that complete system a reality, but researchers said this study represents a key step in that direction.

"Our hope is that we can ultimately develop a system that provides new scientific insights into the brain and new therapies that can help people affected by devastating injuries," Nurmikko said.

Reference: "Neural recording and stimulation using wireless networks of microimplants" by Jihun Lee, Vincent Leung, Ah-Hyoung Lee, Jiannan Huang, Peter Asbeck, Patrick P. Mercier, Stephen Shellhammer, Lawrence Larson, Farah Laiwalla and Arto Nurmikko, 12 August 2021, Nature Electronics.

DOI: 10.1038/s41928-021-00631-8

Other co-authors on the research were Ah-Hyoung Lee (Brown), Jiannan Huang (UCSD), Peter Asbeck (UCSD), Patrick P. Mercier (UCSD), Stephen Shellhammer (Qualcomm), Lawrence Larson (Brown) and Farah Laiwalla (Brown). The research was supported by the Defense Advanced Research Projects Agency (N66001-17-C-4013).