https://go.nature.com/3f8OTTn First nuclear detonation created 'impossible' quasicrystals

Their structures were once controversial. Now researchers have discovered quasicrystals in the aftermath of a 1945 bomb test. **Davide Castelvecchi**

Scientists searching for quasicrystals — so-called 'impossible' materials with unusual, non-repeating structures — have identified one in remnants of the world's first nuclear bomb test.

The previously unknown structure, made of iron, silicon, copper and calcium, probably formed from the fusion of vaporized desert sand and copper cables.

Similar materials have been synthesized in the laboratory and identified in meteorites, but this one, described in Proceedings of the National Academy of Sciences on 17 May, is the first example of a quasicrystal with this combination of elements¹.

Impossible symmetries

Quasicrystals contain building blocks made up of arrangements of atoms that — unlike those in ordinary crystals — do not repeat in a regular, brickwork-like pattern. Whereas ordinary crystal structures In subsequent years, materials scientists synthesized many types of look identical after being translated (shifted along certain quasicrystal, expanding the range of possible forbidden symmetries. directions), quasicrystals have symmetries that were once And Steinhardt and his colleagues later found the first naturally considered impossible: for example, some have pentagonal symmetry, and so look the same if rotated by one-fifth of a full twist.

Institute of Technology in Haifa, first discovered such an produced by smashing materials together at high speed, so

symmetry when rotated in each of various possible directions, something that would occur if its building blocks were icosahedral — that is, had a regular shape with 20 faces². Many researchers initially questioned Shechtman's findings, because it is mathematically impossible to fill space using only icosahedrons. Shechtman ultimately won the 2011 Nobel Prize in Chemistry for the discovery.

At around the same time, Paul Steinhardt, a theoretical physicist now at Princeton University in New Jersey, and his collaborators had begun to theorize the possible existence of non-repeating 3D structures. These had the same symmetry as an icosahedron, but

were assembled from building blocks of several different types, which never repeated in the same pattern^{$\frac{3}{2}$} — thus explaining why the mathematics of symmetrical crystals had missed them. Mathematical physicist Roger Penrose, now at the University of Oxford, UK, and other researchers had previously discovered analogous patterns in two dimensions, which are called Penrose tilings.

This sample of red trinitite was found to contain a previously unknown type Steinhardt recalls the moment in 1982 when he first saw the of quasicrystal. Credit: Luca Bindi, Paul J. Steinhardt experimental data from Shechtman's discovery and compared it

> with his theoretical predictions. "I stood up from my desk and went and looked at our pattern, and you couldn't tell the difference," he says. "So that was kind of an amazing moment."

occurring 'icosahedrite' in fragments from a meteorite recovered in Eastern Siberia, Russia. This quasicrystal probably formed in a collision between two asteroids in the early Solar System,

Materials scientist Daniel Shechtman, now at the Technion Israel Steinhardt says. Some of the lab-made quasicrystals were also impossible symmetry in a synthetic alloy in 1982. It had pentagonal Steinhardt and his team wondered whether the shockwaves from

2 5/24/21 Name		Student number
nuclear explosions might form quasi	crystals, too.	Steinhardt suggests that quasicrystals could be used for a kind of
'Slicing and dicing'		nuclear forensic science, because they might reveal sites where a
In the aftermath of the Trinity test -	- the first ever detonation of a	covert nuclear test has occurred. Quasicrystals might also form in
nuclear bomb, which took place on	16 July 1945 at New Mexico's	other materials that were generated in violent conditions, such as
Alamogordo Bombing Range — re	searchers found a vast field of	fulgurite, the material made when lightning strikes rock, sand or
greenish glassy material that had for	ormed from the liquefaction of	other sediments. "The quasicrystal saga will continue!" says
desert sand. They dubbed this trinitit	e.	Hollister.
The plutonium bomb had been detor	nated on top of a 30-metre-high	doi: <u>https://doi.org/10.1038/d41586-021-01332-0</u> References
tower, which was laden with sensor	s and their cables. As a result,	(2021). <u>Article Google Scholar</u>
some of the trinitite that formed	had reddish inclusions, says	2. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Phys. Rev. Lett. 53, 1951–1953
Steinhardt. "It was a fusion of natura	il material with copper from the	(1984). <u>Article Google Scholar</u> 3 Levine D & Steinhardt P I Phys Rev Lett 53 2477–2480 (1984) Article Google
transmission lines." Quasicrystals	often form from elements that	Scholar Download references
would not normally combine, so	Steinhardt and his colleagues	https://bit.ly/3udWBQs
thought samples of the red trinitite	would be a good place to look	Forget throat swabs: Dutch company claims its
for quasicrystals.	1	breathalyzer can help sniff out COVID-19
Over the course of ten months,	we were slicing and dicing,	"Breathalvzer" that can sniff out the disease based on a mix of
looking at all sorts of minerals," Stel	the same bird of issaehodrol	chemical components exhaled
a tiny grain. The quasicrystal has	the same kind of icosanedral	By Jop de Vrieze
"The dominance of silicon in its s	original discovery.	People seeking to get tested for
Valoria Molinaro, a theoretical about	ructure is quite distinct, says	COVID-19 by Amsterdam's Public
Salt Lake City "However after a	meny quesientels have been	Health Service (GGD) in February
synthesized in the leb " she sous "w	halfy quasicrystals have been	were pioneers: They were the first in
they are so scores in nature " Steinh	ardt says this might be because	the world to be tested using a
the formation of quasicrystals invo	lyes "unusual combinations of	"breathalyzer" that can sniff out the
elements and unusual arrangements"		disease based on a mix of chemical
Like most known quasicrystals the t	rrinitite structure seems to be an	components exhaled by the patient.
allov — a metal-like material made	up of positive ions in a sea of	Dutch health minister Hugo de Jonge gets tested for COVID-19 using the
electrons. This is unusual for silicon	which typically occurs in rock	SpiroNose. Joris van Gennip
in an oxidized form: reversing the o	xidation would require extreme	ar throat such and chapper. But soon after its premiers 25 people
conditions, such as the intense heat	and pressure of a shockwave.	who tested negative turned out to have COVID 10 after all and
says Lincoln Hollister, a geoscientist	at Princeton.	Amsterdam halted its use The Dutch government has decided the
		Transterdam nation its use. The Dutch government has decided the

device itself was innocent, however, and has not withdrawn its authorization. A commercial testing company is now deploying it widely—for example to screen workers at the Eurovision Song Contest, which begins tomorrow in Rotterdam. SpiroNose isn't meant to definitively diagnose infection; instead it aims to rule it out in as many cases as possible. For the remainder, the test yields an "inconclusive," and those people receive a polymerase chain reaction (PCR) or antigen test. "What we want is

to exclude as many people as possible who might be infected with the coronavirus, to reduce the testing burden and increase the willingness to test," says Rianne de Vries, chief operating officer of Breathomix, the Dutch company that makes the device. Exhaled breath tests have proved hard to deliver. A long-sought "That's really, really good," Skipp says. "The sensitivity is as good us any test that is out there, and of course it is much more rapid." Patrick Bossuyt, a test evaluation researcher at Amsterdam University Medical Center who was not involved in the study, calls the results "quite stunning."

breath test for lung cancer still doesn't exist, for example. Yet researchers in several countries are at work on breath tests for COVID-19. They rely on a variety of technologies, including mass spectrometry and gas chromatography, but some of the most promising ones—in terms of affordability and ease of use—are based on nanomaterial-based sensors. Some sense viral particles, but most focus on compounds produced by the human body.

SpiroNose contains seven metal oxide semiconductor sensors that detect thousands of volatile organic compounds in exhaled air; the idea is that the mix changes when someone has a COVID-19 infection. The biological processes responsible for the changes aren't understood, says Paul Skipp, a proteomics researcher at the University of Southampton. "In principle, you're purely measuring a correlation. It's a black box," he says.

But it works, according to a preprint published in February by researchers at Leiden University Medical Center in collaboration with company scientists. Using the breath profiles from 904 participants, 35 of whom were PCR positive for SAR-CoV-2, the test and the PCR test was long enough—two or more days—that team built an algorithm to predict infection based on the breath

Name

Student number

"Oxygen suppression of macroscopic multicellularity" is published

in the May 14, 2021 edition of the journal Nature Communications. Bozdag's co-authors on the paper include Georgia Tech researchers

Will Ratcliff, associate professor in the School of Biological

Sciences; Chris Reinhard, associate professor in the School of Earth

and Atmospheric Sciences; Rozenn Pineau, Ph.D. student in the

The health inspectorate agreed there were no fundamental issues, size of these early multicellular organisms was limited by the depth and De Vries says the company and GGD are working to improve to which oxygen could diffuse into their bodies. The hypothesis the testing process. "We all learned a lot from the issue," she says, makes a simple prediction that has been highly influential within although she's frustrated about the negative publicity the pause both evolutionary biology and geosciences: Greater atmospheric generated. GGD has yet to resume breath testing, however; a oxygen should always increase the size to which multicellular spokesperson declined to explain the reasons but said, "We need to organisms can grow.

complete an additional validation first." It's a hypothesis that's proven difficult to test in a lab. Yet a team of In the meantime, a large commercial testing provider in the Georgia Tech researchers found a way—using directed evolution, Netherlands, Lead Healthcare, has teamed up with Breathomix. It synthetic biology, and mathematical modeling—all brought to bear carried out a pilot screening at a port company in Rotterdam and is on a simple multicellular lifeform called a 'snowflake yeast." The also using SpiroNose to screen workers preparing Eurovision. results? Significant new information on the correlations between During the festival itself, it may test as many as 3500 employees oxygenation of the early Earth and the rise of large multicellular per day. By now, Lead Healthcare has carried out more than 30,000 organisms—and it's all about exactly how much O2 was available to some of our earliest multicellular ancestors. tests; de Vries says the false negative rate is about 0.1%.

Kevin Lamote, a respiratory diagnostics researcher at the University "The positive effect of oxygen on the evolution of multicellularity of Antwerp, says he hopes the field can eventually move away from is entirely dose-dependent—our planet's first oxygenation would the black-box method. Ideally, researchers will find the components have strongly constrained, not promoted, the evolution of in exhaled air that are truly characteristic of a disease and develop multicellular life," explains G. Ozan Bozdag, research scientist in more specific sensors for them, comparable to an alcohol test, he the School of Biological Sciences and the study's lead author. "The says. "We try to achieve this by studying breath samples using positive effect of oxygen on multicellular size may only be realized sensors in parallel with mass spectrometry analyses," Lamote says. when it reaches high levels."

https://bit.ly/3ytpueE

Did Earth's early rise in oxygen support the evolution of multicellular life—or suppress it? Hypothesis brought to bear on a simple multicellular lifeform

called a 'snowflake yeast.''

by Renay San Miguel, Georgia Institute of Technology

Scientists have long thought that there was a direct connection School of Biological Sciences and the Interdisciplinary Graduate between the rise in atmospheric oxygen, which started with the Program in Quantitative Biosciences (QBioS); along with Eric Great Oxygenation Event 2.5 billion years ago, and the rise of large, Libby, assistant professor at Umea University in Sweden and the complex multicellular organisms.

Santa Fe Institute in New Mexico. That theory, the "Oxygen Control Hypothesis," suggests that the Directing yeast to evolve in record time

"We show that the effect of oxygen is more complex than not there when oxygen simply isn't present, or when there's enough previously imagined. The early rise in global oxygen should in fact of it around to diffuse more deeply into tissues."

strongly constrain the evolution of macroscopic multicellularity, Ratcliff says not only does his group's work challenge the Oxygen rather than selecting for larger and more complex organisms," notes Control Hypothesis, it also helps science understand why so little Ratcliff.

"People have long believed that the oxygenation of Earth's surface multicellular organisms in the billion years after the Great was helpful—some going so far as to say it is a precondition—for Oxygenation Event. Ratcliff explains that geologists call this period the evolution of large, complex multicellular organisms," he adds. the "Boring Billion" in Earth's history—also known as the Dullest "But nobody has ever tested this directly, because we haven't had a Time in Earth's History, and Earth's Middle Ages—a period when model system that is both able to undergo lots of generations of oxygen was present in the atmosphere, but at low levels, and evolution quickly, and able to grow over the full range of oxygen multicellular organisms stayed relatively small and simple. conditions," from anaerobic conditions up to modern levels.

The researchers were able to do that, however, with snowflake "Previous work examined the interplay between oxygen and yeast, simple multicellular organisms capable of rapid evolutionary multicellular size mainly through the physical principles of gas change. By varying their growth environment, they evolved diffusion," he says. "While that reasoning is essential, we also need snowflake yeast for over 800 generations in the lab with selection an inclusive consideration of principles of Darwinian evolution for larger size.

multicellular yeast doubled their size very rapidly when they could generations of evolution helped the researchers accomplish just that, not use oxygen, while populations that evolved in the moderately Bozdag adds. oxygenated environment showed no size increase at all," he says "This effect is robust-even over much longer timescales."

Size—and oxygen levels—matter for multicellular growth

In the team's research, "large size easily evolved either when our yeast had no oxygen or plenty of it, but not when oxygen was present at low levels," Ratcliff says. "We did a lot more work to show that this is actually a totally predictable and understandable outcome of the fact that oxygen, when limiting, acts as a resourceif cells can access it, they get a big metabolic benefit. When oxygen is scarce, it can't diffuse very far into organisms, so there is an parts of kidney tumours behave differently, and surprisingly, cells evolutionary incentive for multicellular organisms to be smallallowing most of their cells access to oxygen—a constraint that is highest chance of spreading around the body.

apparent evolutionary innovation was happening in the world of

Bozdag adds another insight into the unique nature of the study. when studying the origin of complex multicellular life on our The results surprised Bozdag. "I was astonished to see that planet." Finally being able to advance organisms through many

More information: G. Ozan Bozdag et al. Oxygen suppression of macroscopic multicellularity, Nature Communications (2021). DOI: 10.1038/s41467-021-23104-0

https://bit.ly/3u6W0zY

Cells from the centre of tumours most likely to spread around the body

Cells within the centre of a tumour are the most aggressive and have the highest chance of spreading around the body

Researchers from the Francis Crick Institute, Royal Marsden, UCL and Cruces University Hospital have found that cells from different within the centre of a tumour are the most aggressive and have the

6 5/24/21 Name	Student number
Cancers can spread to other parts of the body, with cells taking hold	tumour cells, they found that, while most tumours follow a pattern
as secondary tumours which make the disease much harder to treat.	where populations of cells grow in the local area - like a plant
Understanding the mechanics of this spread, a process called	growing up and outwards - two cases demonstrated a "jumping"
metastasis, could lead to new treatments that block this migration.	pattern where cells took hold in a new region of the tumour by
In their multidisciplinary study published today (17 May) in Nature	seemingly 'jumping' over other populations of tumour cells.
Ecology and Evolution, scientists led by the Litchfield lab at UCL	The researchers are now planning to reconstruct 3D tumour maps,
and the Turajlic, Swanton, and Bates labs at the Crick, analysed 756	which will provide an even clearer visualisation of the spatial
cancer biopsy samples from different regions within tumours from	patterns within tumours.
the TRACERx Renal study.	Samra Turajlic, head of the Crick's Cancer Dynamics Laboratory,
They found that cells at the centre of tumours have a less stable	Consultant Medical Oncologist at the Royal Marsden NHS
genome and a higher potential to spread to secondary sites around	Foundation Trust and the Chief Investigator of TRACERx Renal,
the body.	said: "Cancer spread is one of the biggest barriers to improving
By contrast cells at the tumour edge had lower rates of metastasis	survival rates.
as well as lower rates of growth and genetic damage.	In the context of the TRACERx Renal study we previously resolved
"Cancer cells in the central zone of the tumour face harsh	the genetic make up of different tumour areas, but until now, there
environmental conditions, as there's a lack of blood supply and	has been no understanding of how these differences relate spatially.
oxygen.	The most critical question is the part of the tumour from which
They have to adapt to survive, which makes them stronger and	cancer cells break away and migrate making cancer incurable.
more aggressive.	"Using this unique clinical cohort and a multidisciplinary approach,
This also means they are more likely to successfully evolve into	including mathematical modeling, we identified with precision the
cells that can disseminate and take hold in distant organs," says	place in the tumour where genetic chaos emerges to give rise to
Kevin Litchfield, paper author and group leader at the UCL Cancer	metastases. Our observations shed light on the sort of
Institute.	environmental conditions that would foster emergence of
The results highlight a need to pay close attention to the tumour	aggressive behaviour. These findings are a critical foundation for
centre to understand how cancer spreads and to find the cancer cells	considering how we target or even prevent distinct populations of
of greatest threat to the patient.	cells that pose the biggest threat."
It also shows the importance of developing treatments that target	The work was primarily funded by the Royal Marsden Renal Unit, the Biomedical
the unique environmental conditions found within the tumour core	Research UK, Rosetrees Trust, the National Institute for Health Research (NIHR) and the
in order to successfully eliminate the most aggressive tumour cells.	EU Framework Programme for Research and Innovation H2020.
The scientists also looked at how genetically different populations	For further information, contact: <u>press@crick.ac.uk</u> or +44 (0)20 3796 5252
of cancer cells grow within a tumour.	Reference: Zhao, Y. et al. (2021). <u>Selection of metastasis competent subclones in the</u>
Using a unique map building tool to reconstruct the growth of	tumour interior. Nature Ecology & Evolution. DOI: 10.1038/s41559-021-01456-6

7	5/24/21	Name		Student number
		https://bit.ly/3ugLEO5		to breathe.
Exp	perimental	Asthma Vaccine Works	s in Mice, And	While dupilumab and other monoclonal antibody (mAb) treatments
	Could	l Be Trialed in Humans	Soon	can mitigate these symptoms, they can be expensive and require
Expe	rimental vac	cine offers new hope to succ	cessfully treat this	ongoing injections to work, whereas a vaccine achieving the same
-		chronic lung disease		ends could provide cost-effective therapeutic effects in the long
		Peter Dockrill		term.
Asthm	a affects hun	dreds of millions of people	e around the world,	"Conjugate vaccines called kinoids can elicit an endogenous, long-
but an	experimenta	l vaccine offers new hope to	o successfully treat	lasting neutralizing antibody response against a given cytokine, and
this ch	ronic lung dis	sease, linked to hundreds of	thousands of deaths	could be a favorable alternative to therapeutic mAb administration,"
each ye	ear.			the researchers, led by co-first authors Eva Conde and Romain
So far	the prototype	vaccine has only been tested	d in animals, but the	Bertrand, <u>write in their study</u> .
researc	hers now inte	end to conduct a clinical tria	d in human patients	"We hypothesized that a dual vaccination against IL-4 and IL-13
- with	hopes the ap	proach could provide a safe,	, cost-effective, and	would be particularly potent at reducing the severity of chronic
long-te	erm way to pr	otect people from allergic as	thma attacks.	asthma."
"The i	dea is to se	t up in the future a preve	ntive approach for	Developed in conjunction by teams at Infinity, the Institut Pasteur
popula	tions at risk	of developing a severe form	of asthma," one of	in Paris, and French biotechnology company Neovacs, the
the tea	m, pulmonol	ogy researcher Laurent Gui	lleminault from the	experimental vaccine couples the recombinant cytokines with a
Toulou	ise Institute	for Infectious and Infla	mmatory Diseases	carrier protein called CRM197.
(Infinit	y) in France,	told <u>La Dépêche</u> .		In tests with mice, over 90 percent of animals given the vaccine
Previo	us research	has shown that dupilum	<u>ab</u> , a <u>monoclonal</u>	prototype revealed <u>antibodies</u> capable of neutralizing IL-4 and IL-
antiboo	ly used in t	the treatment of eczema, i	s also effective in	13 at six weeks after injection, with the protection lasting for up to
relievi	ng symptoms	and improving lung function	n in cases of severe	a year, at which point more than 60 percent of the mice still showed
asthma	•			high levels of the antibodies.
This is	thought to	be due to the way dupiluma	ab blocks signaling	These data indicate that efficient long-term neutralization of both
from in	nterleukin-4 (IL-4) and interleukin-13 (IL	-13) – two <u>cytokine</u>	IL-4 and IL-13 can be achieved through vaccination with kinoids,"
molecu	<u>lles</u> that play	a role in immune response,	but which are also	the researchers report.
involve	ed in airway	-obstructing type 2 inflam	<u>mation</u> seen in an	In addition, a mouse model of asthma – using animals who received
estimat	ted 50 to 70 p	percent of asthma patients.		intranasal doses of dust mite extract, one of the most common
In case	es of allergio	e asthma, exposure to dust	mites, pollen, and	numan allergens – showed that dual vaccination against IL-4 and
other a	allergens can	produce large amounts of	these cytokines, in	11-15 provided significant protection from the allergens in terms of
additio	n to excessiv	ve amounts of the antibody	<u>immunoglobulin E</u>	nearing lung functioning, compared to control animals who didn't
<u>(IgE)</u> , j	promoting in	flammation in the airways an	nd making it harder	receive the shot.

8 5/24/21 Name	Student number
In genetically engineered mice bred to generate the human version	dark oxygen production might be far more common — and
of the IL-4 and IL-13 cytokines, the vaccine also showed positiv	important — than previously thought.
results, neutralizing the cytokines and reducing IgE levels for a	Ammonia-oxidizing archaea (AOA) are <u>widespread</u> microbes found
least 11 weeks post-vaccination.	everywhere from the <u>seafloor</u> to <u>Mt. Everest</u> . They convert
That's not the same as saying we know it works equally well in	ammonia into nitrite for energy in an oxygen-dependent process
people, but is a promising sign for future tests in humans – although	called <u>nitrification</u> . Despite this, AOA somehow <u>thrive</u> in <u>oxygen-</u>
we won't know for sure whether the vaccine is safe and effective in	minimum zones (OMZs), regions in the ocean where oxygen
people until <u>clinical trials</u> are conducted.	concentrations plummet.
For now, the researchers say that we have here is a "proof o	Researchers at the University of Southern Denmark recently
concept" that long term neutralization of IL-4 and IL-13 can b	announced in a pre-print (a completed study which has not yet
achieved with the prototype vaccine, while protecting against	passed peer-review) that an AOA called <i>Nitrosopumilus maritimus</i>
several key features of chronic asthma, including airway hyper	- may have let them in on the secret to its success in OMZs. Sealed
responsiveness, <u>eosinophilia</u> , and mucus overproduction.	up in airtight containers, N. maritimus grew in the lab under the
Exactly how long the protection lasts for – and just how th	watch of super-sensitive oxygen sensors.
blockade of the cytokines achieves these remarkable effects – ar	As expected, the cells quickly consumed all available oxygen, using
questions that remain to be further investigated. For now, though	, it for nitrification. But then something strange happened. Right
the most pressing next step is to test the experimental shot in	after oxygen concentrations hit zero, they rose again. After two
humans.	years of experiments it was clear that instead of dying out or
To that end, a clinical trial is currently being organized by	hibernating after running out of oxygen, N. maritimus made its own
<u>Guilleminault and Neovacs</u> , with patients in Toulouse and	l oxygen from nitrite, producing dinitrogen (N_2) as a by-product.
Strasbourg expected to receive the first human injections of the	Additional tests confirmed that <i>N. maritimus</i> wasn't using any of
drug sometime in the next two years.	the three previously known ways of making oxygen in the dark —
The findings are reported in <u>Nature Communications</u> .	its trick was all its own, and not only a novel method of light-
<u>https://bit.ly/3va99t5</u>	independent oxygen production but also a completely new chemical
Marine archaea make oxygen in the dark using nitrite	pathway for recycling <u>biological nitrogen</u> into N_2 .
Meet Nitrosopumilus maritimus, which is capable of a never-	This new metabolism can't replace photosynthesis—oxygen in the
before-seen oxygen synthesis method	N. maritimus cultures peaked at levels about 1000x lower than
Elise Cutts	would have been expected from photosynthesis. But because AOA
from aurlight photosynthesis combines CO and water sighting	are boun increation wight he for more important and will are d
nom sumgn, <u>photosynthesis</u> combines CO_2 and water, yielding	then provide thought
sugar and oxygen. But turn on the lights, and making oxygen get tricky. Only a small handful of microbas are known to do it. Du	
uleky. Only a small <u>mandrul</u> of <u>microbes</u> are known to do it. Bu	

9 5/24/21 Name		Student number
<u>https://bit.l</u>	y/3hVT9rd	and store information.
New material could create '	neurons' and 'synapses' for	In this study, her PhD student Anouk Goossens, first author of the
new con	nputers	paper, created thin films of a ferromagnetic metal (strontium-
Physicists have used a comp	lex oxide to create elements	ruthenate oxide, SRO) grown on a substrate of strontium titanate
comparable to the neurons and s	ynapses in the brain using spins,	oxide. The resulting thin film contained magnetic domains that
a magnetic prop	erty of electrons	were perpendicular to the plane of the film. 'These can be switched
Classic computers use binary valu	ues $(0/1)$ to perform. By contrast,	more efficiently than in-plane magnetic domains', explains
our brain cells can use more valu	es to operate, making them more	Goossens. By adapting the growth conditions, it is possible to
energy-efficient than computers	s. This is why scientists are	control the crystal orientation in the SRO. Previously, out-of-plane
interested in neuromorphic (brain-	like) computing.	magnetic domains have been made using other techniques, but
Physicists from the University of	Groningen (the Netherlands) have	these typically require complex layer structures.
used a complex oxide to create ele	ements comparable to the neurons	Magnetic anisotropy
and synapses in the brain using	g spins, a magnetic property of	The magnetic domains can be switched using a current through a
electrons. Their results were pub	lished on 18 May in the journal	platinum electrode on top of the SRO. Goossens: when the
<u>Frontiers in Nanotechnology</u> .		this switching is deterministic; the entire domain will switch '
Although computers can do str	aightforward calculations much	However when the magnetic domains are slightly tilted the
faster than humans, our brains out	perform silicon machines in tasks	response is probabilistic: not all the domains are the same and
like object recognition. Furtherm	iore, our brain uses less energy	intermediate values occur when only part of the crystals in the
than computers. Part of this can b	e explained by the way our brain	domain have switched
operates: whereas a computer use	s a binary system (with values 0)	By choosing variants of the substrate on which the SRO is grown
or 1), brain cells can provide more	e analogue signals with a range of	the scientists can control its magnetic anisotropy. This allows them
values.		to produce two different spintronic devices 'This magnetic
I hin films		anisotropy is exactly what we wanted' says Goossens 'Probabilistic
I ne operation of our brains can b	e simulated in computers, but the	switching compares to how neurons function while the
basic architecture still relies on	a binary system. That is why	deterministic switching is more like a synapse.'
scientist look for ways to expan	d this, creating hardware that is	The scientists expect that in the future, brain-like computer
idea is to create magnetic bits th	Tace with normal computers. One	hardware can be created by combining these different domains in a
save Tamalika Ranariaa Profess	or of Spintronics of Functional	spintronic device that can be connected to standard silicon-based
Materials at the Zernike Inst	itute for Advanced Materials	circuits. Furthermore, probabilistic switching would also allow for
University of Groningen She wo	orks on spintronics which uses a	stochastic computing, a promising technology which represents
magnetic property of electrons cal	led 'spin' to transport, manipulate	continuous values by streams of random bits. Banerjee: 'We have

found a way to control intermediate states, not just for memory but in Madrid, Ankara and Milano looked at the available evidence also for computing.' Reference: A.S. Goossens, M.A.T. Leiviskä and T. Banerjee: Anisotropy and Current Control of Magnetization in SrRuO3/SrTiO3 Heterostructures for Spin-Memristors. Frontiers in Nanotechnology 18 May 2021

https://bit.lv/2RCdO8N

New expert statement confirms strong links between our hormones and COVID-19

New expert statement confirms strong links between our hormones and COVID-19

The endocrine system is strongly involved in SARS-Cov-2 infection - so much so that evidence of an "endocrine phenotype" of COVID-19 has emerged, according to a statement by the European Society of Endocrinology (ESE) published in the journal Endocrine in April 2021. Leading endocrinology researchers looked into the evidence that has accumulated over the past year since the pandemic emerged, and consistently found evidence for links across a variety of endocrine conditions. This statement constitutes an update of a March 2020 statement that was of the earliest and most read pieces delineating the involvement of the endocrine system in COVID-19.

Dr Manel Puig from the Universitat Autònoma de Barcelona in Spain and first author on the statement said "the evidence is clear. The effect on hormones cannot be ignored in the context of COVID-19". He added "we need to be aware of the endocrine consequences of COVID-19 for patients with a known endocrine condition such as diabetes, obesity or adrenal insufficiency, but also for people without a known condition. Vitamin D insufficiency for example is very common, and the knowledge that this condition has emerged frequently in the hospitalized COVID-19 population and may negatively impact outcomes should not be taken lightly".

Dr Puig, together with Profs Marazuela, Yildiz and Giustina based

with respect to COVID-19 across a number of endocrine conditions and related factors: diabetes, obesity, nutrition, hypocalcemia, vitamin D insufficiency, vertebral fractures, adrenal insufficiency, as well as pituitary/thyroid issues and sex hormones.

Diabetes has emerged as one of the most frequent comorbidities associated with severity and mortality of COVID-19, according to a rapidly increasing amount of published data on the incidence of COVID-19 in patients over the last year. Mortality in type 1 or type 2 diabetes has consistently increased during the year of pandemic and evidence is emerging that a bidirectional relationship between diabetes and COVID-19 may exist, both in terms of worsening existing conditions and new onset of diabetes.

The researchers identified similar trends for patients with obesity. Obesity increases susceptibility to SARS-CoV-2 and the risk for COVID-19 adverse outcomes. They posit that nutritional management is important both for patients with obesity or undernourishment in order to limit their increased susceptibility and severity of infection. Vitamin D, calcium and bone are other areas showing a growing body of evidence that better monitoring and solutions for patients are needed in the context of COVID-19.

With regard to vaccination, the statement concludes that available evidence suggests COVID-19 vaccination should not be handled differently in patients with stable endocrine diseases. However, patients with adrenal insufficiency may need adjusted glucocorticoid treatment to address side effects such as fever. The authors suggest data from the field should be collected in an international database in order to form firm conclusions on this matter. They also present a decalogue for endocrinologists and patients with endocrine and metabolic conditions in the conclusions of the statement.

This knowledge highlights the important role endocrinologists will

11 5/24/21	Name						S	tudent nur	mber							
need to play in future	researc	h on	COVID-19	and	other	global	Society	Open	Science.	No	one	is ye	t sure	when	the	insects
health issues.							longevit	ty tops	out, but th	ne an	swer	is proł	ably in	1 excess	s of a	decade
h	ttna.//h	it 1.,/2	11111111111111111111111111111111111111				annroad	hing or	r avan ma	tohin	a tha	t of a	at alloo	ng wh	0.001	ourvive

https://bit.ly/3wtLJ23 The Never-Aging Ants With a Terrible Secret A parasite gives its hosts the appearance of youth, and an unmatched social power in the colony.

By Katherine J. Wu

their outer shells soft and their hue distinctively tawny. Their scent, boring," Foitzik told me.

too, seems to shift, wafting out an alluring perfume that endears Normalcy goes out the door, however, when Temnothorax larvae them to others. While their sisters, who have nearly identical ingest tapeworm-egg-infested bird feces trucked in by foragers. The genomes, perish within months of being born, these death-defying parasites hatch and set up permanent residence in the young ants' insects live on for years and years.

They are Temnothorax ants, and their elixirs of life are the tapeworms that teem within their bellies—parasites that paradoxically prolong the life of their host at a strange and terrible cost.

Susanne Foitzik / Johannes Gutenberg University Mainz A few such life-lengthening partnerships have been documented between microbes and insects such as wasps, beetles, and mosquitoes. But what these ants experience is more extreme than anything that's come before, says Susanne Foitzik, an entomologist about the same proportion as the colonies' ultra-long-lived queens. at Johannes Gutenberg University Mainz, in Germany, who studies the ants and their tapeworms. Infected Temnothorax ants live at least three times longer than their siblings, and perhaps much more, involved in the study, told me. And despite their old age, the ants'

approaching or even matching that of ant queens, who can survive up to 20 years.

"Some other parasites do extend life spans," Shelley Adamo, a parasite expert at Dalhousie University, in Nova Scotia, who was not involved in the study, told me. "But not like this."

Deep in the forests of Germany, nestled neatly into the hollowed-Under typical circumstances, Temnothorax ants live as most other out shells of acorns, live a smattering of ants who have stumbled ants do. They reside in communities ruled by a single fertile queen upon a fountain of youth. They are born workers, but do not do attended by a legion of workers whose professional lives take a much work. Their days are spent lollygagging about the nest, where predictable trajectory. They first tend the queen's eggs as nurses, their siblings shower them with gifts of food. They seem to elude then graduate into foraging roles that take them outside the nest. the ravages of old age, retaining a durably adolescent physique, Apart from the whole freaky parasite thing, "they are pretty

> abdomens, where they can access a steady stream of nutrients. In return, they offer their host an unconventional renter's fee: an extralong life span that Foitzik and her colleagues managed to record in real time.

> The researchers spent three years monitoring dozens of Temnothorax colonies in the lab, comparing the fates of workers

who'd fallen prey to the parasites and those who remained infection-free. By the end of their experiment, almost every single one of the hundreds of worm-free workers had, unsurprisingly, died. But more than half the parasitized workers were still kicking— "That was amazing to see," Biplabendu Das, an ant biologist and parasite expert at the University of Central Florida, who wasn't she and her colleagues report in a study published today in Royal bodies still bore the hallmarks of youth. They were difficult to

Student number

distinguish from uninfected nurses, who are usually the most colony, no ant can truly act alone. Parasites of these communities juvenile members of the colony's working class. automatically extend their reach to multiple animals at once, a The tapeworm-laden ants didn't just outlive their siblings, the team rippling mind-control effect that spreads and amplifies the found. They were coddled while they did it. They spent their days consequences of infection. Although the tapeworms had infected

lounging in their nest, performing none of the tasks expected of only a fraction of the Temnothorax workers, they were workers. They were groomed, fed, and carried by their siblings, puppeteering the entire society.

often receiving more attention than even the queen—unheard of in That altered existence might play directly into the parasite's hands. Tapeworms of these species can't mature into adults and produce a typical ant society—and gave absolutely nothing in return.

The deal the ants have cut with their parasites seems, at first pass, eggs until their ant host is consumed by a bird—a fate that insects pretty cushy. Foitzik told me that her team couldn't find any overt in full possession of their faculties try to avoid. But ants who spend downsides to life as an infected ant, a finding that appears to shatter all their time lazing around the house make for easy prey; hosts the standard paradigm of parasitism. Even the colonies as a whole who are pampered and long-lived have a high chance of surviving remained largely intact. Workers continued to work; queens until they're eaten. The worm's most ingenious move might play continued to lay eggs. The threads that held each Temnothorax out in some ants' final moments, as they trade their natural fear of society together seemed unmussed. intruders for a dollop of ennui. When Foitzik and her students crack

Only when the researchers took a closer look did that tapestry begin open infected Temnothorax colonies, the parasitized workers do to unravel. The uninfected workers in parasitized colonies, they little more than stare expectantly skyward. "Everyone else is just realized, were laboring harder. Strained by the additional burden of taking the larvae and running," Foitzik said. "The infected workers their wormed-up nestmates, they seemed to be shunting care away are just like, *Oh, what's going on?*"

from their queen. They were dying sooner than they might have if Down to the molecular level, the parasite is pulling the strings. Sara the colonies had remained parasite-free. At the community level, Beros, Foitzik's former doctoral student and the paper's first author, the ants were exhibiting signs of stress, and the parasite's true tax told me she has split open Temnothorax abdomens and counted up was, at last, starting to show. "The cost is in the division of labor," to 70 tapeworms inside. From there, the worms can unleash a slurry Das said. The worms were tapping into not just "individual [ant] of proteins and chemicals that futz with the ant's core physiology, physiology, but also social interactions," Farrah Bashey-Visser, a likely impacting their host's hormones, immune system, and genes. parasitologist at Indiana University who wasn't involved in the What they achieve appears to be a rough pantomime of how ant study, told me. queens attain their mind-boggling life span, a feat humans still

Read: Life is tough for teenage parasites.

don't understand. (The tapeworms' grasp of ant aging is far more Scientists think of social insects not as single bugs, but as interlaced advanced than ours.) The parasites are effectively flash-freezing parts of a giant "superorganism," Manuela Ramalho, an ant their host into a preserved state—one that will up their own chances biologist at Cornell University, who wasn't involved in the study, of survival, and help guarantee that their species lives on. told me. When one individual acts, others around it *react*; in a The worms' MO is subtle and ingenious. They are agents not of

Name

Student number

disaster, but of an insidious social sickness that sets reality only When they ran this study, Asano and his team slightly, barely perceptibly, askew. Infected workers get a taste of were originally interested in deciphering which invincibility and status, swaddling themselves in youth and the regions of the brain were responsible for benefits it brings. They also form resource sinks that sap the energy describing what was in the picture (hippo), what of those around them. They become echoes of the microorganisms they were doing (swimming), where (swamp) and they harbor. They are, in the end, parasites themselves. when (summer). But, as his team rummaged Katherine J. Wu is a staff writer at The Atlantic, where she covers science.

https://bit.ly/3bLK4x5

There's a neurological reason you say 'um' when you think of a word

Disfluencies can shed light about what's going on in the brain as we speak

Adriel John Orena

Eishi Asano's latest work sheds light on those seemingly pesky words that litter our speech: *uhs* and *ums*.

As a neurologist at Wayne State University, Asano works on mapping human abilities to brain regions. One such important ability is the ability to use language. Neuroscientists have overrepresented in all languages: French speakers say euh, discovered that, like many little cogs in a wheel, a wide network of brain regions all work together to produce language. Certainly, the their fingers.

protecting these brain regions during brain surgery is of high priority.

Asano has an opportunity few have: to study the brain in action. During a pre-surgical procedure called an electrocorticography (ECoG), an incision is made in a research participant's skull, and electrodes are placed directly on the exposed surface of their brain. He then presents them with photographs of complex scenes and asks them to describe it.

"This one has some, uh, hippos, who are swimming in the, uh, swamp, during the summer," a research participant in his study might say.

through transcripts, what transpired between these words – the *uhs* – caught their attention.

In a task developed by Dr. Eishi Asano and his team, participants are asked to describe the 4 Ws (What, Who, Where, and When) of complex scenes like the one pictured here Aji Vinister Denistan on Unsplash

Referred to as a "disfluencies" by linguists, uhs and ums are often viewed as disruptions to the flow of speech. They are littered across our speech in all contexts, whether in presentations to a large audience, or in conversations with your closest pal. Estimates vary, but one research group found that such disfluencies pop up every 4.6 seconds, on average. They are equally short and Mandarin speakers say \mathcal{II} , and ASL signers sometimes wiggle

ability to communicate with others affects all aspects of life. Thus, But while uhs and ums may seem like accidental nonsense words, disfluencies can actually provide us a rare window onto what's going on in the brain as we speak. For example, psycholinguists (scientists who study the psychology of language) argue that disfluencies can actually convey meaning. When researchers scoured through a corpus of transcribed speech, they found that a large proportion of disfluencies arose in specific locations: before difficult-to-pronounce and difficult-to-name words, or before words that haven't been recently discussed. In short, when we need some time to think of the next word, we make use of *uhs* and *ums*.

> Asano's recent work, published in *Scientific Reports*, shows an example of this. Asano and his team inspected the brain activity of

Name

Student number

ECoG, provides more reliable data compared to other neuroscience damage, patients may experience difficulty organizing their speech. such as from accidental movements by participants.

with one participant producing seven times more *uhs* and *ums* than is a perfectly acceptable sentiment to convey in many contexts. To another. Findings about brain activity, nonetheless, were consistent. err is human, after all.

"[When the participants] produced the disfluency, extensive areas of the association cortex showed activation," Asano says.

The association cortex is a group of areas on the surface (cortex) of the brain, which has previously been linked with language tasks that require relatively high amounts of linguistic effort. For example, these regions are highly engaged when producing words that have competing meanings. When producing the word "orange," our brains have to suppress the sense of the word that conveys a fruit if we are thinking about the color.

These findings reiterate the idea that uhs and ums, in and of Asaph Hall at the Naval Observatory on August 18, 1877. themselves, are not causing speech to be disfluent

These findings reiterate the idea that uhs and ums, in and of with inclinations of only 0.01 and themselves, are not causing speech to be disfluent. Rather, they are 0.92 degrees relative to the behavioral markers that speakers are working hard to find the next equatorial plane of the planet. word, Asano says. When a speech task is more difficult, the Although Phobos and Deimos are association cortex works harder. And when the association cortex small, their peculiar orbits hide works hard, we sometimes produce disfluencies to fill the space. Every person's brain is wired slightly differently, so having precise

knowledge of the brain regions responsible for speaking, listening, and yes, even for being disfluent, is important for neurosurgeons who have to make important decisions for their patients.

"I remove brain regions that generate seizure activity for epileptic

three adolescents that performed the scene-describing task depicted patients," Asano explains. "But, if you remove the wrong areas, above. While three participants is a smaller sample size than is then functionally important areas will be damaged." Indeed, there is typical in neuroscience research, the technique used in this study, some evidence that when parts of the association cortex sustain methods. The fact that electrodes are placed directly on the cerebral So, while they moonlight as mere speech errors, *uhs* and *ums* can cortex makes this technique less susceptible to "noise" in the data, actually give us insight into the brain. A healthy number of disfluencies in our speech let neuroscientists, and other listeners, The three research participants varied in how disfluent they were, know that we're experiencing a difficult speech moment — which

https://bit.lv/20Hxjwa

Phobos and Deimos are Fragments of Larger Martian Moon, Study Suggests

Phobos and Deimos, two satellites of Mars, originated from disintegration of a much larger moon between 1 and 2.7 billion years ago, according to new computer simulations and an analysis of data from NASA's InSight mission. by Enrico de Lazaro

Phobos and Deimos were discovered by the American astronomer

These potato-shaped satellites orbit Mars in synchronous rotation

important secrets about their past.

Mars is kept company by two cratered moons — an inner moon named Phobos and an outer moon named Deimos. Image credit: NASA / JPL-Caltech / Malin Space Science Systems / Texas A&M University.

"Earth's Moon is essentially spherical, while the moons of Mars are very irregularly shaped — like potatoes," said Amirhossein Bagheri,

15	5/24/21	Name		Student number
a doctora	al student at	the Institute	of Geophysics at ETH Zurich,	"The upcoming Martian Moons Exploration mission will also
adding "	Phobos and I	Deimos look	more like asteroids than natural	provide crucial information on the moons' interiors, which will help
moons.	This led peo	ple to susp	ect that they might in fact be	to settle the question of their origin."
asteroids	that were cap	tured in Ma	rs's gravity field."	The <u>findings</u> appear in the journal <i>Nature Astronomy</i> .
"But that	t's where the	problems st	arted: captured objects would be	A. Bagheri et al. Dynamical evidence for Phobos and Deimos as remnants of a disrupted
expected	to follow an	eccentric o	orbit around the planet, and that	10.1038/s41550-021-01306-2
orbit wo	uld be at a 1	random incl	ination; in contradiction to this	https://bit.ly/3bNpYCw
hypothes	is, the orbits	of the Martia	an moons are almost circular and	Surveillance turns up new coronavirus threat to
move in	the equatoria	l plane of M	lars. So, what is the explanation	humans
for the cu	arrent orbits of	f Phobos and	l Deimos?"	Malaysian pneumonia cases reveal possible dog-to-human
To solve	this dynamic	e problem, ł	Sagheri and colleagues relied on	Transmission
computer	r simulations	and seism	ic data from NASA's InSight	Durham, N.C Researchers have discovered a new coronavirus, found
mission.		.1 1.	1.1 • 1 1 1 •	in a child with pneumonia in Malaysia in 2018, that appears to have
"The ide	a was to trac	e the orbits	and their changes back into the	jumped from dog to human.
past, sai		Lhan, a rese	archer at the Physics Institute of	If confirmed as a pathogen, the novel canine-like coronavirus could
the Univ	ersity of Zur	ich and the	Institute of Geophysics at ETH	represent the eighth unique coronavirus known to cause disease in
Zurich.		1. : 4 f. T		humans. The discovery also suggests coronaviruses are being
AS II II	irned out, the	c ordits of f	nobos and Deimos appeared to	transmitted from animals to humans more commonly than was
lileolu in	the same place	ast. This has	the same origin "	previously thought.
The rece	archere conclu	e and there i	arger colocial body was orbiting	"How common this virus is, and whether it can be transmitted
More bo	alchers collen	angiont mo	on was probably hit by another	efficiently from dogs to humans or between humans, nobody
hody bet	tween 1 and	2.7 billion x	vers and disintegrated as a	knows," said Gregory Gray, M.D., a professor of medicine, global
regult "I	Phobos and C	eimos are t	he remnants of that lost moon "	health and environmental health at the Duke University.
Raghari a	aid	cinios are t	ne remnants of that lost moon,	"What's more important is that these coronaviruses are likely
The team	o's simulation	s also show	that while Deimos very slowly	spilling over to humans from animals much more frequently than
continue	s to ascend	Phohos will	impact on Mars in 39 million	we know," said Gray, who led the research that appears in the
vears or f	tidally disinte	rate into a r	ing	journal Clinical Infectious Diseases.
"The res	ults stand to	be improved	with Mars InSight geophysical	"We are missing them because most hospital diagnostic tests only
data, in	particular th	ne dissipatio	on in Mars and its frequency	pick up known human coronaviruses."
depender	ice that control	of the orbital	history of Phobos." the scientists	Working with visiting scholar Leshan Xiu, a Ph.D. student, Gray
said.				was on a team that in 2020 developed a molecular diagnostic tool to

16

5/24/21

detect most coronaviruses from the Coronaviridae family that includes SARS-CoV-2, which causes COVID-19.

The team used that tool to examine 301 archived pneumonia cases and picked up signals for canine coronaviruses from eight people hospitalized with pneumonia in Sarawak, a state in East Malaysia. Researchers at Ohio State, led by Anastasia N. Vlasova, grew a virus from one of the clinical specimens, and through a painstaking mutations that create aberrant cells that run amok in the body. process of genome reconstruction, were able to identify it as a novel In a new paper published this week in the journal BioEssays, canine coronavirus.

"There are probably multiple canine coronaviruses circulating and spilling over into humans that we don't know about," Gray said. Sarawak could be a rich place to detect them, he said, since it's an equatorial area with rich biodiversity.

"Many of those spillovers are dead ends, they don't ever leave that researchers claim, but are pre-existent and latent in normal cells. first human host," Gray said.

surveillance where humans and animals intersect, and among and Kimberly Bussey, cancer geneticist and bioinformatician from people who are sick enough to get hospitalized for novel viruses." Gray said diagnostic tools like the one developed to find this virus Glendale, Ariz., teamed up with Charles Lineweaver and Anneke have the potential to identify other viruses new to humans before Blackburn at the Australian National University (ANU) in Canberra they can cause a pandemic.

"It takes many years for them to adapt to the human immune system and cause infection, and then to become efficient in human-tohuman transmission. We need to look for these pathogens and detect them early."

In addition to Gray and Vlasova, researchers included Annika Diaz, Teck-Hock Toh, Jeffrey Soon-Yit Lee and Linda J. Saif.

This work was supported by the U.S. Naval Medical Research Center-Asia, Vysnova Partners, Duke University's Global Health Institute and The Ohio State University. CITATION: "Novel Canine Coronavirus Isolated from a Hospitalized Pneumonia Patient, East Malaysia," Anastasia N. Vlasova, Annika Diaz, Gregory C. Gray, Teck-Hock Toh, Jeffrey Soon-Yit Lee, Linda J. Saif, Debasu Damtie, Leshan Xiu. Clinical Infectious Diseases, May 20, 2021. DOI: 10.1093/cid/ciab456

Student number

https://bit.ly/3vepn4F

Challenging the standard model of cancer

New atavistic model shows role of ancient genes in the spread of

cancer

In spite of decades of research, cancer remains an enigma. Conventional wisdom holds that cancer is driven by random

Arizona and Australian researchers challenge this model by proposing that cancer is a type of genetic throwback, that progresses via a series of reversions to ancestral forms of life. In contrast with the conventional model, the distinctive capabilities of cancer cells are not primarily generated by mutations, the

Regents' Professor Paul Davies, director of Arizona State "But if we really want to mitigate the threat, we need better University's Beyond Center for Fundamental Concepts in Science the Precision Medicine Program at Midwestern University, to refine what they call the Serial Atavism Model (SAM) of cancer. "These pathogens don't just cause a pandemic overnight," Gray said. This model suggests that cancer occurs through multiple steps that resurrect ancient cellular functions.

> Such functions are retained by evolution for specific purposes such as embryo development and wound healing, and are usually turned off in the adult form of complex organisms. But they can be turned back on if something compromises the organism's regulatory controls. It is the resulting resurrection steps, or atavistic reversions, that are mostly responsible for the ability of cancer cells to survive, proliferate, resist therapy and metastasize, the researchers said.

> Davies and Bussey are also members of ASU's Arizona Cancer Evolution Center (ACE) which seeks to understand cancer, not just

17 5/24/21 Name	Student number
in humans, but across all complex species, in the light of	vegetation than did the last ice age.
evolutionary processes.	Ice entombed much of the planet from roughly 115,000 to some
"Cancer research has been transformed in recent years by	20,000 years ago. Then, massive glaciers around the world started
comparing genetic sequences across thousands of species to	to retreat and global temperatures rose, resulting in dramatic
determine gene ages," Davies said. Just as geologists can date rock	alterations to Earth's ecosystems.
strata, so geneticists can date genes, a technique known as	To investigate how the abundance and composition of global
phylostratigraphy.	vegetation changed after that thaw, Ondřej Mottl and Suzette
"The atavistic model predicts that the genes needed for cancer's	Flantua at the University of Bergen in Norway and their colleagues
abilities are mostly ancient - in some cases little changed over	analysed 1,181 fossilized pollen samples from the past 18,000 years.
billions of years," Davies added.	The pollen came from all continents except Antarctica.
Lineweaver explained, "In biology, nothing makes sense except in	The researchers found that global vegetation has been transformed,
the light of evolution, and in the case of cancer nothing makes	first by the climate changes that accompanied the end of the last
sense except in the light of the deep evolutionary changes that	glacial period. However, starting about 4,000 years ago, when
occurred as we became multicellular organisms."	agriculture intensified, the pace of change in global vegetation
"The atavistic model of cancer has gained increasing traction	accelerated, reaching or exceeding the rate of change at the end of
around the world," added Bussey. "In part, this is because it makes	the most recent ice age. <u>Science (2021)</u>
many predictions that can be tested by phylostratigraphy, unlike the	https://wb.md/3uePkQj
conventional somatic mutation theory."	Sardines Linked to Reduced Type 2 Diabetes Risk
Blackburn, a cancer biologist in ANU's John Curtin School of	Those who ate a diet rich in sardines for 1 year show significant
Medical Research, agreed.	reductions in risk of developing type 2 diabetes
"Appreciation of the importance of gene ages is growing among	Nancy A. Melville
oncologists and cancer biologists," she said. "Now we need to use	Older people with prediabetes who followed a diet rich in sardines
this insight to develop novel therapeutic strategies. A better	for 1 year show significant reductions in risk of developing type 2
understanding of cancer can lead to better therapeutic outcomes."	diabetes compared with those placed on a similarly healthy diet but
https://go.nature.com/30HRG8X	without the sardines, results from a new randomized trial show.
Our radical changes to Earth's greenery began long	"A 1-year, sardine-enriched type 2 diabetes-preventive diet in an
ago — with farms, not factories	elderly population with prediabetes exerts a greater protective effect
Humanity's imprint on plant species and abundance began	against developing type 2 diabetes and cardiovascular events, by
roughly 4,000 years ago, when agriculture took off.	improving anthropometric parameters, blood chemistry profile,
Human activity began to transform the number and variety of plant	apple composition in erythrocytes memoranes, and metabolomics
species on Earth thousands of years ago, long before the Industrial	by Diana Diaz Dizzolo, DhD, of the Hognital Clinic of Derectors
Revolution, and might have had an even greater impact on	by Diana Diaz-Rizzolo, Find, of the nospital Clinic of Barcelolla,

18 5/24/21	Name		Student number
Spain, and colleag	gues.		with the nonsardine group (all $P < .005$).
While cardiovasc	ular and other h	ealth benefits of unsaturated fats in	Furthermore, the sardine consumption group had a greater decrease
oily fish are well-	established and	are a key component in diets such	in insulin resistance, assessed by Homeostatic Model Assessment
as the highly rec	commended Me	diterranean diet, the authors note	for <u>Insulin</u> Resistance (HOMA-IR; $P = .032$).
that the consum	ption of sardin	es for the prevention of type 2	Sardines Are Cheap and Reduce Blood Pressure Too
diabetes has not p	reviously been	studied.	"Not only are sardines reasonably priced and easy to find, but they
In addition to be	ing rich in heal	thy omega-3 fatty acids, sardines	are safe and help to prevent the onset of type 2 diabetes," said Díaz-
have high concer	itrations of <u>taur</u>	<u>ine</u> — approximately 147 mg per	Rizzolo in a press statement.
100 g serving –	– which, depe	nding on the sardine species, is	Those in the sardine group also showed significant decreases in
believed to have	hypoglycemic, a	antioxidant, and anti-inflammatory	systolic blood pressure ($P = .014$) and diastolic blood pressure (P
benefits, the authority	ors note.		= .020) versus baseline, while no significant changes were observed
Participants Ad	vised to Const	ame the Whole Sardine, Bones	in the control group. The authors suggest that sardines' rich taurine
and All			concentrations could play a role in those effects.
To evaluate the e	effects, research	ers enrolled 152 patients aged 65	"Previously, only lean fish consumption had demonstrated an
and older who ha	d been diagnose	ed with prediabetes (blood glucose	improvement in blood pressure, not fatty fish consumption, perhaps
levels between 10	10-124 mg/dL) a	and placed them all on a nutritional	because the species studied excluded those with a higher taurine
program to reduce	e the risk of diab	betes for 1 year.	content such as sardines," they speculate.
In addition, about	half $(n = 75)$ w	ere also instructed to consume 200	In addition to showing improvements in levels of taurine, those in
g of canned sare	lines in olive	oil per week, in 100 g servings	the sardine group also showed increases in nutrients that have been
consumed twice	per week. Thos	e participants were recommended	linked to health benefits, including omega-3 EPA and DHA,
to consume the e	entire sardine, v	without removal of bones, due to	vitamin D, and fluorine (all $P < .05$).
their rich conter	it of calcium	and <u>vitamin D</u> . They were also	The authors note that the increases could be attributed to sardines'
provided with rec	ipes that used ca	anned sardines.	rich concentration of those nutrients, as well as to the olive oil that
At 1 year, the per	centage of partic	cipants classified as being at a very	is present in the sardine can.
high risk of type	2 diabetes, asse	ssed by the Finnish Diabetes Risk	Some Benefits Seen in Both Groups
Score (FINDRIS	C), compared	with baseline, had declined to a	The patients in the study were a mean age of 71 and had been in a
much greater de	gree in the sar	line consumption group (37% at	prediabetic state for an average of 4.8 years at the beginning of the
baseline vs 8% at	1 year) compar	ed with those in the control group,	study. They were 55% male and there were no other significant
who only consum	ed the nutrition	al diet (27% vs 22%) ($P = .021$).	differences in characteristics between the groups.
In addition, thos	e in the sardin	e group had greater increases in	While the conversion from being prediabetic to type 2 diabetes in
healthy <u>HDL</u> c	holesterol and	the glucose-regulating protein	the adult population has been reported to be about 10.6%, and the
hormone adipone	ectin, with dec	reases in <u>triglycerides</u> compared	risk has been observed to be even higher in the 65 and older

19

5/24/21

Student number

population, rates were lower than that in both groups.

"At the end of our 1-year study, we observed a [rate of] new-onset type 2 diabetes of 2.7% and 5.2% in the sardine group and control group, respectively," the authors note. They add the differences were not statistically significant.

Both the sardine consumption and control groups showed significant reductions in A1c versus baseline (P = .011 and P = .010, respectively), as well as significant reductions in glucose fasting concentrations (P = .020 and P = .040, respectively).

And while the sardine group showed greater improvements in HDL versus the control group (P = .045), only the control group showed a significant decrease in total cholesterol versus baseline (P = .032). Both groups showed improvements in the management of body web of domestication in this species, weight, body mass index, and waist and hip circumference, in which can help researchers better addition to improvement in body composition — despite no understand evolution in general. They physical activity components in the programs, the authors note.

"This is probably because both groups followed the same base type preserving 2 diabetes-preventive diet, with the one exception of sardine resources as climate change and new supplementation, and, although they did not modify their physical activity, both groups reduced their daily caloric intake through food," the authors note.

The possibility of reducing diabetes risk through dietary changes as opposed to weight loss is especially important in the older population, the authors note, as some studies suggest a link between weight loss in the elderly and an increased risk of mortality.

In a second phase of the study, the researchers say they are evaluating the effect of sardines on the intestinal microbiota, "since it affects the regulation of many biological processes, and we need to understand if they have played a part in this protective effect against type 2 diabetes," Díaz-Rizzolo concluded.

The study was funded by RecerCaixa 2013. The authors report that " no industry sponsorship was received for this work that could have influenced its outcome." Clin Nutr. 2021;40:2587-2598. Abstract

First we tamed turnips, then we turned them into bok choy and other veggies

https://bit.ly/3woBiNt

Humans likely domesticated turnips near the Hindu Kush mountains, near present day Afghanistan, 3,500 to 6,000 years ago before spreading them east and west and breeding them into related vegetables like bok choy and broccoli rabe. by Eric Hamilton, University of Wisconsin-Madison

This is according to new research representing the most complete

look yet at how humans domesticated the ubiquitous species Brassica rapa. The findings untangle the complex may also provide information for important genetic pests threaten some crops.

Nine examples of domesticated Brassica rapa, a single species that humans have bred into root vegetables like turnips, leafy greens like bok choy, and oil seeds. Credit: Alex McAlvav

University of Wisconsin-Madison Professor of Botany Eve Emshwiller and her former graduate student Alex McAlvay led the research, which was published April 30 in the journal Molecular Biology and Evolution.

By sequencing the DNA of more than 400 different varieties of Brassica rapa from around the world, they identified both the Hindu Kush as the likely center of domestication, and weeds from the Caucasus region as among the most likely wild relatives of the species' vegetable crops.

The true identities of these wild relatives—which have been hidden

20	5/24/21	Na
	-,,	

Student number

for years because of the tangled web of family relationships in the to distinguish between those feral or escaped weeds and the ones species—provide valuable information to evolutionary biologists that are likely truly wild."

and crop breeders alike. The genetic sequences of these varieties allowed McAlvay and his "We might want this information in order to conserve those wild collaborators to reconstruct an evolutionary tree of the species." relatives, so they don't disappear in the course of habitats being From this tree, they discovered that Central Asian turnips were the lost," says Emshwiller. Wild plants can confer valuable traits when most genetically diverse crops. That in turn suggested that humans crossed with crops, which typically lose their hardiness during in the region likely initially selected for the fatter, starch-rich taproots that became turnips several thousand years ago, as domestication.

"And domestication is a good way to study evolution in general," agriculture took root around the world.

Emshwiller adds. "If we understand how crops evolved under Ancient literary references to turnips in the region, and the apparent human influence, that can help us extrapolate to how wild plants existence of the word for "turnip" in the ancestor of languages from might evolve under different kinds of selection." the region, also supported the turnip as the original domesticated Much like how Labradors, Chihuahuas and pugs are all the same form.

species of dog, Brassica rapa takes the form of dozens of unique-Turnips then spread west to Europe and east to East Asia, where looking varieties, such as turnips or cooking greens, that are all farmers later selected for larger leaves. These leafy versions very closely related. Today, these domesticated varieties are became bok choy, napa cabbage and broccoli rabe, among other widespread in grocery stores, and weeds of the same species have vegetables found today.

"That parallel selection for leafy forms is interesting and gives us also colonized most of the world. Although it's long been known that dogs descended from wolves, an evolutionary system to compare how this leafiness trait can the history of Brassica rapa is much murkier. Past research has arise," says McAlvay. Other farmers selected other lineages for variously located the original domestication event as taking place in their oil-rich seeds.

Europe, West Asia, Central Asia or East Asia. And it's remained From their hundreds of samples, the ones that appeared to be truly unclear if turnips or oilseeds were the first tamed varieties. wild came mostly from the Caucasus region between Turkey and This confusion has stemmed from the ubiquity of Brassica rapa and Russia. Two other wild relatives were isolated in Italy and Siberia,

its many weedy forms, which could be truly wild or merely escaped but they may have spread there from the Caucasus. genetic histories are vastly different.

crops turned feral. While wild and feral forms look similar, their "We now know an important area to target for conservation of the

wild relatives," McAlvay says.

"In this work we used more than 400 samples (of the species), so The researchers also modeled the habitat suitability of wild we had a broader data set than had been used previously. And we Brassica rapa 6,000 years ago, around the time the species was also had more wild collections than had been used previously," says domesticated. Past climates would have supported the species McAlvay, now an assistant curator at the New York Botanical primarily in mountainous regions extending from East Asia to Garden. "Having enough of those non-cultivated forms allowed us Western Europe, including the Caucasus and Hindu Kush regions,

21 5/24/21 Name	Student number
providing ample opportunity for humans to spread the species far	Michael's Department of Family and Community Medicine and
and wide.	others were recruited from three rural sites. Participants were
Going forward, the researchers want to include more weedy	randomized into two groups - half received free medications via
samples from the Hindu Kush region in particular. As the site of	mail, the other half had their usual access to medications.
domestication, the region should continue to host wild versions of	Two years into the study, adherence to all appropriate prescribed
Brassica rapa.	medicines was 35 per cent higher in the free distribution group
In addition to the opportunities for conservation and better methods	compared with the group that had usual access to medications. Free
for studying domestication and evolution, McAlvay says there's a	distribution of medication also showed to reduce healthcare costs,
simple joy in understanding how that veggie on the grocery store	including hospitalization, by an average of \$1,222 per patient per
shelf got to where it is.	year.
"It's fun to know where your crops are from," he says.	"The cost savings are substantial, but they are less important than
<i>more information:</i> Alex C McAlvay et al, Brassica Rapa domestication: untangling wild and feral forms and convergence of crop morphotypes. Molecular Biology and Evolution	people simply being able to afford taking lifesaving medications,"
(2021). <u>DOI: 10.1093/molbev/msab108</u>	said Dr. Nav Persaud, a scientist at the Li Ka Shing Knowledge
https://bit.ly/3oI0ziP	Institute of St. Michael's and lead author of the study.
Providing medications for free leads to greater	This is the first study of providing people with free access to a
adherence and cost-savings, study shows	comprehensive set of medicines, and noperuny it will be the last
Increases patient adherence by 35% and reduces total health	formily physician at St. Michael's Hospital
spending by an average of over \$1,000 annually	In June 2010 the Advisory Council on the Implementation of
Free access to essential medicines increases patient adherence to	National Dharmacara recommended a universal single payer
taking medication by 35 per cent and reduces total health spending	public pharmacare estimating such a program would save Canada
by an average of over \$1,000 per patient per year, according to a	an estimated \$5 billion per year. The report cited a list of medicines
two-year study that tested the effects of providing patients with free	like the one used in the CLEAN Meds study as "a starting point" for
and convenient access to a carefully selected set of medications.	determining which drugs all Canadians should have free access to
The findings, published May 21 in PLOS Medicine, come as	The CLEAN Meds Trial focused on 128 essential medicines
advocates urge Canada to carve a path toward single-payer, public	adapted from the WHO Model List of Essential Medicines and
pharmacare. Canada is the only country with universal healthcare	removed treatments not needed in Canada. The medicines in the
that does not have a universal pharmacare program.	study included treatments for acute conditions such as antibiotics
A group of researchers led by St. Michael's Hospital of Unity	and pain relievers as well as chronic conditions such as
Health Toronto recruited a total of 786 patients across nine primary	antipsychotics and HIV-AIDS medications
care sites in Ontario who reported cost-related non-adherence to	The paper is the final result of the CLEAN Meds Trial Preliminary
medications. Most of the study participants were recruited from St.	results of the trial after one year of free medication indicated

22 5/24/21 Name	Student number
improved adherence, improvements in some health outcomes, and	Comets comprise only a small fraction of all impactors on Earth,
that free distribution of essential medicines led to a 160 per cent	but researchers believe they caused some of the biggest impact
increase in the likelihood of participants being able to make ends	events over Earth's history because they can be big and because of
meet.	the fact that their orbits are such that they can impact at high speed.
<u>https://bit.ly/3v8zLLb</u>	April 22, 2021, Lyrid meteor shower radiants in CAMS data
Rare 4000-year comets can cause meteor showers on	(yellow dots) from long-period comet Thatcher. Credit: P.
Earth	Jenniskens / SETI Institute.
Potentially hazardous comets that were last near Earth orbit as	"In the future, with more observations, we may be able to detect
far back as 2,000 BC	fainter showers and trace the orbit of parent comets on even longer
Comets that circle the Sun in very elongated orbits spread their	orbits," said Jenniskens.
debris so thin along their orbit or eject it out of the solar system	Every night, the CAMS network determines the direction from
altogether so that their meteor showers are hard to detect. From a	which comet debris is entering Earth's atmosphere. Maps are
new meteor shower survey published in the journal Icarus,	created on an interactive celestial sphere (posted at
researchers now report that they can detect showers from the debris	http://cams.seti.org/FDL/) that shows the meteor showers as
in the path of comets that pass close to Earth orbit and are known to	colored blobs. Clicking on those blobs shows the measured orbits in
return as infrequently as once every 4,000 years.	the solar system.
"This creates a situational awareness for potentially hazardous	These are the <u>shooting stars</u> you see with the naked eye," said
comets that were last near Earth orbit as far back as 2,000 BC," said	Jenniskens. By tracing their approach direction, these maps show
meteor astronomer and lead author Peter Jenniskens of the SETI	the sky and the universe around us in a very different light.
Institute.	An analysis of the data found that long-period comet meteor
Jenniskens is the lead of the Cameras for Allsky Meteor	snowers can last for many days.
Surveillance (CAMS) project, which observes and triangulates the	This was a surprise to me, says Jenniskens. It probably means
visible meteors in the night sky using low- light video security	that these comets returned to the solar system many times in the
cameras to measure their trajectory and orbit. There are CAMS	Data also revealed that the most dispersed mateor showers show the
networks now in nine countries, led by co-authors on the paper.	highest fraction of small meteoroids
In recent years, new networks in Australia, Chile and Namibia	"The most dispersed showers are probably the eldest ones" says
significantly increased the number of triangulated meteors. The	Ine most dispersed showers are probably the oldest ones, says Jappickans, "So, this could mean that the larger meteoroids fall
addition of these networks resulted in a better and more complete	apart into smaller meteoroids over time "
picture of the meteor showers in the <u>night sky</u> .	More information: Peter Jenniskens et al, Meteor showers from known long-period
Until recently, we only knew five long-period comets to be parent	comets, Icarus (2021). DOI: 10.1016/j.icarus.2021.114469
bodies to one of our meteor showers," said Jenniskens, "but now we	
identified nine more, and perhaps as many as 15."	

23	5/24/21	Name		Student number
		https://wb.md/3fIIvk	<u>L</u>	an arsenal of horrifying tactics to manipulate and deceive patients
Ob/gyn Sentenced to 59 Years for Unnecessary			or Unnecessary	into undergoing invasive, unnecessary, and devastating medical
		Surgeries, Fraud		procedures," said Raj Parekh, the acting US Attorney for the
A federal judge sentenced Javaid Perwaiz, MD, to 59 years in				Eastern District of Virginia, in a <u>statement</u> .
prison for healthcare fraud and performing unnecessary				Parekh said the "fraudulent and destructive surgeries caused
gynecologic and obstetrical procedures, including sterilizations			ncluding sterilizations	irreversible damage to the victims," including rendering them
0.	0	without patients' conse	ent.	sterile "by using fear to remove organs from their bodies that he had
		Alicia Ault		no right to take."
Judg	ge Rebecca Smi	th of the US District Co	ourt, Eastern District of	Perwaiz falsely told women they had cancer or that they would
Virg	ginia, handed do	own the sentence, tellin	ng the physician, "This	develop cancer, according to Parekh and former patients. Twenty-
[was	s] an overwhelm	ing amount of fraud at	every point. It was done	five former patients testified at the physician's trial last November,
for g	greed and to enh	nance your lavish lifesty	le and you have shown	in which a jury <u>convicted</u> him on 52 counts.
no r	emorse," accord	ing to WAVY-TV in Ch	esapeake, Virginia.	At Perwaiz's 2019 detention hearing, Shamai Watkins, 44, of
Perv	vaiz owned at	least four Mercedes Be	enz cars and a Bentley	Portsmouth, said the physician had performed eight or nine surgical
auto	mobile, multiple	e properties, gold, and h	undreds of thousands of	procedures on her between 1998 and 2013, including a
dolla	ars in cash and	l retirement accounts	when he was arrested,	hysterectomy when she was in her mid-30s, <u>according</u> to the
acco	ording to federal	prosecutors.		Associated Press. Watkins said the ob/gyn told her she was
The	physician's atto	orney, Joseph R. Pope,	told Medscape Medical	incapable of conceiving because she had cancerous cells, the AP
New	s that the Perwa	aiz maintains his innoce	ence and will appeal his	reported. More than 60 individuals submitted victim impact
conv	viction and sente	encing.		statements to the court.
Perv	vaiz had practic	ed in the Hampton Roa	ds, Virginia, area since	In addition, nurses who had worked with Perwaiz testified and
the	1980s, according	g to the US District Atte	orney. He is believed to	noted that they had complained about his practices to supervisors at
be 7	1, but the federa	l investigation determin	ed that he used multiple	hospitals where he had admitting privileges.
<u>birth</u>	dates on variou	is documents, so his exa	ct age is uncertain.	The Associated Press reported that federal agents began
Fede	eral prosecutors	alleged in their 2019 in	dictment that, beginning	investigating Perwaiz in 2018, after a hospital worker submitted a
in 2	010, Perwaiz su	bmitted at least \$21 mi	llion in false claims for	tip that he was performing unnecessary surgeries on unsuspecting
hyst	eroscopies, a	colposcopies, vagina	and abdominal	patients. The worker said Perwaiz's patients would often tell
hyst	erectomies, dila	tion and curettage (D&	Cs), lysis of adhesions,	hospital staff they were there for "annual clean outs."
salp	ingo-oophorecto	mies, myomectomies,	and cystectomies, and	Federal prosecutors submitted evidence that Perwaiz falsified
that	he pressured p	patients into having pro	ocedures that were not	obstetric records to ensure that he would be reimbursed even
appı	opriate or neces	sary.		though he induced labor early, before the recommended gestational
"Mc	tivated by his in	nsatiable and reprehensi	ble greed, Perwaiz used	age. The doctor also backdated Medicaid paperwork to make it

appear he had complied with the program's required 30-day waiting microbial life. Besides adding more evidence to the idea that there once was period for sterilizations. Perwaiz faced a maximum penalty of 465 years in prison, according organic matter on Mars, directly detecting organic salts would also to the US Attorney's Office. Federal prosecutors sought a 50-year support modern-day Martian habitability, given that on Earth, some

organisms can use organic salts, such as oxalates and acetates, for term, WAVY reported. Perwaiz graduated from Nishtar Medical College, University of energy.

Health Sciences in Lahore, Pakistan, in 1974, Medscape reported "If we determine that there are organic salts concentrated anywhere when he was arrested. He was first licensed in Virginia in 1980. on Mars, we'll want to investigate those regions further, and ideally State records show a history of disciplinary actions, starting in 1984, drill deeper below the surface where organic matter could be better when the Virginia State Board of Medicine put him on notice that preserved," said James M. T. Lewis, an organic geochemist who led they were looking into at least 14 complaints that he had performed the research, published on March 30 in the *Journal of Geophysical* inappropriate or unnecessary hysterectomies. Perwaiz also admitted *Research: Planets*. Lewis is based at NASA's Goddard Space Flight at that time that he had engaged in a sexual relationship with a Center in Greenbelt, Maryland. patient. The board censored him, but only for "lack of Lewis's lab experiments and analysis of data from the Sample

documentation of patient records." In 1996, Perwaiz pled guilty to tax evasion, which led to an belly, indirectly point to the presence of organic salts. But directly automatic revocation of his license. His license was reinstated later identifying them on Mars is hard to do with instruments like SAM, that year, but he was placed on probation.

met its terms and his license was fully reinstated.

No other actions are listed, despite his arrest and conviction. The ingredients in Martian soil. Virginia Department of Health Professions states that Perwaiz's However, Lewis and his team propose that another Curiosity license expired in March 2020.

https://bit.ly/3v8DuZb Salts could be important piece of Martian organic puzzle, scientists find

Organic salts on Mars could be remnants of ancient microbial life A NASA team has found that organic salts are likely present on Mars. Like shards of ancient pottery, these salts are the chemical remnants of organic compounds, such as those previously detected by NASA's Curiosity rover. Organic compounds and salts on Mars could have formed by geologic processes or be remnants of ancient

Analysis at Mars (SAM), a portable chemistry lab inside Curiosity's

which heats Martian soil and rocks to release gases that reveal the In 1999, the Virginia medical board <u>determined that Perwaiz</u> had composition of these samples. The challenge is that heating organic salts produces only simple gases that could be released by other

> instrument that uses a different technique to peer at Martian soil, the Chemistry and Mineralogy instrument, or CheMin for short, could detect certain organic salts if they are present in sufficient amounts. So far, CheMin has not detected organic salts.

> Finding organic molecules, or their organic salt remnants, is essential in NASA's search for life on other worlds. But this is a challenging task on the surface of Mars, where billions of years of radiation have erased or broken apart organic matter. Like an archeologist digging up pieces of pottery, Curiosity collects Martian soil and rocks, which may contain tiny chunks of organic

Student number

scientists doing analyses on Mars can use this information," Lewis

be detected by Curiosity's instrument CheMin. To determine the

compounds, and then SAM and other instruments identify their heating samples to upwards of 1,800 degrees Fahrenheit (1,000 chemical structure. degrees Celsius). The heat breaks apart molecules, releasing some

Using data that Curiosity beams down to Earth, scientists like of them as gases. Different molecules release different gases at Lewis and his team try to piece together these broken organic specific temperatures; thus, by looking at which temperatures pieces. Their goal is to infer what type of larger molecules they may release which gases, scientists can infer what the sample is made of. once have belonged to and what those molecules could reveal about "When heating Martian samples, there are many interactions that the ancient environment and potential biology on Mars. can happen between minerals and organic matter that could make it

"We're trying to unravel billions of years of organic chemistry," more difficult to draw conclusions from our experiments, so the Lewis said, "and in that organic record there could be the ultimate work we're doing is trying to pick apart those interactions so that prize: evidence that life once existed on the Red Planet."

While some experts have predicted for decades that ancient organic said.

compounds are preserved on Mars, it took experiments by Lewis analyzed a range of organic salts mixed with an inert silica Curiosity's SAM to confirm this. For example, in 2018, NASA powder to replicate a Martian rock. He also investigated the impact Goddard astrobiologist Jennifer L. Eigenbrode led an international of adding perchlorates to the silica mixtures. Perchlorates are salts team of Curiosity mission scientists who reported the detection of containing chlorine and oxygen, and they are common on Mars. myriad molecules containing an essential element of life as we Scientists have long worried that they could interfere with know it: carbon. Scientists identify most carbon-containing experiments seeking signs of organic matter.

Indeed, researchers found that perchlorates did interfere with their molecules as "organic." "The fact that there's organic matter preserved in 3-billion-year-old experiments, and they pinpointed how. But they also found that the rocks, and we found it at the surface, is a very promising sign that results they collected from perchlorate-containing samples better we might be able to tap more information from better preserved matched SAM data than when perchlorates were absent, bolstering samples below the surface," Eigenbrode said. She worked with the likelihood that organic salts are present on Mars. Lewis on this new study. Additionally, Lewis and his team reported that organic salts could

Analyzing Organic Salts in the Lab

Decades ago, scientists predicted that organic compounds on Mars composition of a sample, CheMin shoots X-rays at it and measures could be breaking down into salts. These salts, they argued, would the angle at which the X-rays are diffracted toward the detector.

be more likely to persist on the Martian surface than big, complex Curiosity's SAM and CheMin teams will continue to search for molecules, such as the ones that are associated with the functioning signals of organic salts as the rover moves into a new region on of living things. Mount Sharp in Gale Crater.

If there were organic salts present in Martian samples, Lewis and Soon, scientists will also have an opportunity to study betterhis team wanted to find out how getting heated in the SAM oven preserved soil below the Martian surface. The European Space could affect what types of gases they would release. SAM works by Agency's forthcoming ExoMars rover, which is equipped to drill

26	5/24/21	Name
20	5/24/21	Name

down to 6.5 feet, or 2 meters, will carry a Goddard instrument that "But it remains true," he wrote, "that under conditions which will analyze the chemistry of these deeper Martian layers. NASA's gradually interfere with the normal activities of the organism, the Perseverance rover doesn't have an instrument that can detect behavior consists in 'trying' successively different reactions, till organic salts, but the rover is collecting samples for future return to one is found that affords relief."

for organic compounds.

More information: J. M. T. Lewis et al, Pyrolysis of Oxalate, Acetate, and Perchlorate Mixtures and the Implications for Organic Salts on Mars, Journal of Geophysical Research: Planets (2021). DOI: 10.1029/2020JE006803

https://bit.ly/3fCxykJ **Can a Cell Make Decisions?**

A series of experiments shows, remarkably, that it just might

By Jennifer Frazer

In 1906, zoologist Herbert Spencer Jennings published Behavior of the Lower *Organisms*, a book that contained a provocative idea: microbes can change their minds.

Stentor. Credit: Wikimedia (CC BY 4.0)

them and humans can see them, and so brazen they can catch and Stentor roeselii, which prefers to chill poolside. eat rotifers—proper animals with hundreds of cells and a simple Gunawardena became fascinated by what replicating the Destroyer and sarlacc pit.

confronted with a stream of irritating <u>carmine powder</u> expertly willing to give it a try at night and on weekends—with no funding. aimed at their mouths by his steady hand, Stentor would first bend Advertisement

powder, then contract and finally detach.

Advertisement

stimuli (he tried other chemicals) and steps were sometimes omitted. extraordinary.

Earth, where scientists can use sophisticated lab machines to look In short, stentors could confront a stimulus with one behavior, and then choose a costlier approach if the irritant persisted. At least for a short while (a period that Jennings declared difficult to determine experimentally and still unresolved), it could "remember" that it had tried one solution without success, and opt for another.

> But in 1967, scientists from a different school of animal behavior repeated his experiment and failed to produce the same result. And with that, Jennings's findings were consigned to the dustbin.

> Then about 10 years ago, Jeremy Gunawardena, an associate professor of systems biology at Harvard Medical School, discovered the experiment and its defenestration and decided that it deserved another look. To his surprise, he discovered the 1967 team had not used the correct species of Stentor (being behaviorists who believed variation flowed from the environment and not genes, they

His subject was a single cell bristling with beating hairs called might have felt the species didn't matter). The one they had chosen, Stentor. These trumpet-shaped predators are so large fish can eat Stentor coeruleus, strongly prefers to swim, unlike Jennings's

brain. In the microbial galaxy, stentors lie somewhere between Star experiment might reveal about what single cells are capable of. After years of dangling the idea fruitlessly at lab meetings, he found Jennings decided to annoy it and see what happened. When undergrad Joseph Dexter and postdoc Sudhakaran Prabakaran were

away, then reverse the beating of its hairs (called <u>cilia</u>) to expel the This time, the Harvard team managed to track down the correct species in an English golf course pond, construct their own "Device for Irritating Stentors" (being quantitative biologists, they lacked He noted that the order of behaviors varied somewhat with different Jennings's extreme pipette skills), and discovered something

In their setup, *Stentor* did not respond to carmine powder the way apparent earthly limit. Having something like a noggin in there is Jennings described. However, when faced with barrages of 21st-less credulity-stretching once you grasp this.

century plastic microbeads, individual Stentor roeseli behaved In the new study, published in the journal Current Biology in 2019, consistent with Jennings's description—and in one remarkable way the scientists found that *Stentor* indeed switched behaviors in response to repeated puffs of beads, and the order of operations was that Jennings did not observe in 1906. If Stentor really can "decide," it certainly isn't the only way the generally consistent with Jennings's description. Detachment was

ciliates—the group of shaggy microbes to which *Stentor* belongs—always preceded by contraction, and mathematical analyses resemble us. A ciliate operates like an animal at the scale of a single revealed cilia alternation or bending were far more likely to appear before contraction than after. huge cell, and the resemblance can be startling.

For example, some glue bundles of their cilia into structures called There is something else interesting about their data, which I cirri and can use them as legs, mouths, paddles or teeth. *Euplotes* encourage you to examine for yourself: it sure looks like stentors skitters nimbly along surfaces atop cirri like some sort of *Close* have personalities. Some repeatedly contracted and relaxed, or bent, *Encounters*-class water flea. The cirri are wired by nervelike contracted, then relaxed, seemingly willing to tolerate irritation—or neurofibrils. If the fibrils are cut, the cirri fall limp. to live dangerously. These were the optimists.

Some ciliates pack tiny tethered darts they can fire to attack prey, Some contracted once or just a few times, never to relax again. deter predators or simply drop anchor. Others sport tentacles that Others contracted and detached, and that was it. These were the snag food. Like sea stars, ciliates can regenerate entire bodies pessimists (or perhaps just the ones with a more recent successful within a day or two from shockingly tiny pieces provided those "door dash").

pieces contain both a bit of the cell's cilia-studded armor and a bit Some stentors always responded with one or two preferred of nucleus, the cell's genetic heart. Many ciliates divide in the usual behaviors, and never with others that they were surely just as way by pinching in two, but some stalked or sessile ciliates push biologically capable of performing. One indefatigable individual small round larvae into the world through a special birth canal. Advertisement

One ciliate called *Diplodinium* lives in the rumen of cows and other Does *Stentor* possess something like agency—a capacity to make contractile fibers called myonemes, a "backbone" made of stacked seemed perfectly random.

subjected to 13 bead blasts responded persistently with ciliary alternation or contraction, never bending or detachment.

hoofed animals, a special environment known to harbor all kinds of decisions? This study and Jennings' evidence certainly suggest so.

strange things, <u>about half of which by mass may be ciliates</u> (think There was a final provocative finding. This team's statistical about that next time you see a cow placidly chewing its cud). analysis revealed that the choice between contracting or detaching *Diplodinium* contains neurofibrils, cirri, musclelike striated was consistent the probability of a fair coin toss. In other words, it

plates, a mouth, an esophagus that contracts with the help of a ring There's only one problem: no known cellular mechanism can tethered to its exterior, and an anus. But remember: single cell. produce this result. That head scratcher remains both unreplicated In short, ciliates have taken the biology of the solo cell to its and unexplained.

Perhaps it is time to let go of our preconceived notions of what cells window for early medical intervention might have passed.

are capable of because they are *only* cells, and the cells in our own "Initially, most patients with COVID don't have difficulty breathing. soviet-style bodies are the equivalent of worker bees. The They can have quite low oxygen saturation and still be capabilities of wily, gunslinging, free-living cells may well exceed asymptomatic," said Sotoodehnia. "If patients follow the current our dim primate imaginations.

https://bit.lv/2SjLhF8 **COVID-19 mortality associated with 2 signs easily** measured at home

Abnormal blood-oxygen levels and breathing rates are strong predictors of poor patient outcomes in-hospital, study shows

A study of 1,095 patients hospitalized with COVID-19 discovered that two easily measurable signs of health - respiration rate and blood-oxygen saturation - are distinctly predictive of higher mortality. Notably, the authors said, anyone who receives a positive COVID-19 screening test can easily monitor for these two signs at home.

This context is lacking in current guidance from the Centers for Disease Control and Prevention, which tells people with COVID-19 to seek medical attention when they experience overt symptoms Overall, 197 patients died in the hospital. Compared to those such as "trouble breathing" and "persistent pain or pressure in the chest" - indications that may be absent even when respiration and blood oxygen have reached dangerous levels, the authors say.

"These findings apply to the lived experience of the majority of patients with COVID-19: being at home, feeling anxious, wondering how to know whether their illness will progress and wondering when it makes sense to go to the hospital," said Dr. Neal Chatterjee of the University of Washington School of Medicine.

Chatterjee and fellow cardiologist Dr. Nona Sotoodehnia were colead authors of the paper, which was to be published May 24 in the journal Influenza and Other Respiratory Viruses.

They said the findings suggest that, for some people with COVID-19, by the time they feel bad enough to come to the hospital, a oxygen saturation of 92% to 96%. It's important to note that only

guidance, because they may not get short of breath until their blood oxygen is quite low, then we are missing a chance to intervene early with life-saving treatment."

The researchers examined the cases of 1,095 patients age 18 and older who were admitted with COVID-19 to UW Medicine hospitals in Seattle or to Rush University Medical Center in Chicago. The study span was March 1 to June 8, 2020. The lone exclusions were people who chose "comfort measures only" at time of their admission.

While patients frequently had hypoxemia (low blood-oxygen saturation; 91% or below for this study) or tachypnea (fast, shallow breathing; 23 breaths per minute for this study), few reported feeling short of breath or coughing regardless of blood oxygen.

The study's primary measure was all-cause in-hospital mortality. admitted with normal blood oxygen, hypoxemic patients had a mortality risk 1.8 to 4.0 times greater, depending on the patient's blood oxygen levels. Similarly, compared to patients admitted with normal respiratory rates, those with tachypnea had a mortality risk 1.9 to 3.2 times greater. By contrast, other clinical signs at admission, including temperature, heart rate and blood pressure, were not associated with mortality.

Nearly all patients with hypoxemia and tachypnea required supplemental oxygen, which, when paired with inflammationreducing glucocorticoids, can effectively treat acute cases of COVID-19.

"We give supplemental oxygen to patients to maintain blood

29 5/24/21 Name	Student number
patients on supplemental oxygen benefit from the life-saving effects	about the origins of the deadly Covid-19 virus, with newly released
of glucocorticoids," Sotoodehnia said. "On average our hypoxemic	intelligence showing that three researchers from China's Wuhan
patients had an oxygen saturation of 91% when they came into the	Institute of Virology became sick enough to be hospitalized in
hospital, so a huge number of them were already well below where	November 2019, a month before the virus was first identified.
we would've administered life-saving measures. For them, that care	Researchers at the lab in Wuhan studied coronaviruses and other
was delayed."	pathogens, leading to speculation that the lab could have been -
The findings have relevance for family-medicine practitioners and	even unintentionally — the origin of the virus that has killed
virtual-care providers, who typically are first-line clinical contacts	millions of people worldwide and left many others with troubling
for people who have received a positive COVID-19 test result and	long-term symptoms. China has adamantly denied these claims, but
want to monitor meaningful symptoms.	has been criticized for a lack of transparency on the issue.
"We recommend that the CDC and [World Health Organization]	According to the WSJ, the Wuhan lab employees were sick "with
consider recasting their guidelines to account for this population of	symptoms consistent with both Covid-19 and common seasonal
asymptomatic people who actually merit hospital admission and	illness."
care," Chatterjee said. "But people don't walk around knowing	Michael Gordon, one of the authors of the WSJ article, was on
WHO and CDC guidelines; we get this guidance from our	CNN Newsroom to discuss their reporting with Pamela Brown.
physicians and news stories."	"No theory has been proven — fully proven," said Gordon, noting
Sotoodehnia recommended that people with positive COVID-19	that the theory it originated with a bat, then infected another species
test results, particularly those at higher risk of adverse outcomes	of animal, and then humans, has "never been proven because they
due to advanced age or obesity, buy or borrow a pulse oximeter and	have not found any animals that have been contaminated with the
monitor for blood-oxygen below 92%. The clip-like devices fit over	virus."
a fingertip and can be purchased for under \$20.	The theory that it escaped from a lab was initially discounted as a
"An even simpler measure is respiratory rate - how many breaths	conspiracy theory, and but we've found that there's a renewed
you take in a minute. Ask a friend or family member to monitor you	effort to take a look at the lab theory, primarily because of
for a minute while you're not paying attention to your breathing,	circumstantial evidence, but significant circumstantial evidence.
and if you hit 23 breaths per minute, you should contact your	Brown asked him for clarification about the evidence and what they

https://bit.ly/3oVhDCp

physician," she said.

JUST IN: Wall Street Journal Report About Wuhan Lab Researchers Being Hospitalized in November 2019

Raises New Ouestions About Virus' Origins

By Sarah Rumpf May 23rd, 2021, 6:49 pm

A new report by the Wall Street Journal is raising new questions significant because the first known confirmed case of Covid-19 in

had learned about the timeline.

"There were three researchers from the lab that, according to

American intelligence, fell ill in November 2019, and were so ill that they went to a local hospital," Gordon replied. They could

not say for sure that it was Covid-19 or seasonal flu, or what

exactly caused their illnesses, "but circumstantially it's quite

Name

China is December 8th, so now here you have researchers in the lab going to the hospital just in the weeks prior to the known outbreak. The U.S. government was very interested in this report, Gordon said, "because it could be a tell-tale sign that the virus escaped from

the lab, not that it was a biological weapon or engineered by the Chinese, but perhaps they took a virus into the lab to work on a potential vaccine and it escaped."

"A number of scientists who previously discounted the lab theory are coming around to that view," Gordon continued, saying that he and his WSJ colleagues were "straight shooters" and "playing it down the middle and not taking an individual stance in this debate." "I would also say," he concluded, "that China's own behavior in not sharing information on the safety record of the lab, or the tests that the lab researchers may have undergone to see whether they have antibodies, by not sharing a whole host of data about people who got sick in Wuhan province, and that behavior — withholding information — has led to suspicions of, well, maybe they have something to hide?"

Watch the video above, via CNN.